Presents a state-of-the-art review of the current technology and applications being utilized to identify sources of fecal contamination in waterways. - Serves as a useful reference for researchers in the food industry, especially scientists investigating etiological agents responsible for food contamination. - Provides background information on MST methods and the assumptions and limitations associated with their use. - Covers a broad range of topics related to MST, including environmental monitoring, public health and national security, population biology, and microbial ecology. - Offers valuable insights into future research directions and technology developments.
Recent and forecasted advances in microbiology, molecular biology, and analytical chemistry have made it timely to reassess the current paradigm of relying predominantly or exclusively on traditional bacterial indicators for all types of waterborne pathogens. Nonetheless, indicator approaches will still be required for the foreseeable future because it is not practical or feasible to monitor for the complete spectrum of microorganisms that may occur in water, and many known pathogens are difficult to detect directly and reliably in water samples. This comprehensive report recommends the development and use of a "tool box" approach by the U.S Environmental Protection Agency and others for assessing microbial water quality in which available indicator organisms (and/or pathogens in some cases) and detection method(s) are matched to the requirements of a particular application. The report further recommends the use of a phased, three-level monitoring framework to support the selection of indicators and indicator approaches.Â
Freshwater Microbiology: Perspectives of Bacterial Dynamics in Lake Ecosystems provides a comprehensive and systematic analysis of microbial ecology in lakes. It offers basic information on how well the bacterial community composition varies along the spatio-temporal and trophic gradients along with the evaluation of the bioindicator species of bacteria so as to act as a key to predict the trophic status of lake ecosystems. The book helps to identify the factors of potential importance in structuring the bacterial communities in lakes as it delves into the dynamics and diversity of bacterial community composition in relation to various water quality parameters. It helps to identify the possibility of bioremediation plans and devising future policy decisions, with better conservation and management practices. - Provides a comprehensive and systematic analysis of microbial ecology - Helps to identify the factors of potential importance in structuring the bacterial community composition - Gives insight into the bacterial diversity of freshwater lake ecosystems along with their industrial potential - Caters to the needs and aspirations of students and professional researchers
Heterotrophic Plate Counts and Drinking-water Safety provides a critical assessment of the role of the Heterotrophic Plate Count (HPC) measurement in drinking water quality management. It was developed from an Expert workshop of 32 scientists convened by the World Health Organization and the WHO/NSF International Collaborating Centre for Drinking Water Safety and Treatment in Geneva, Switzerland. Heterotrophs are organisms, including bacteria, yeasts and moulds, that require an external source of organic carbon for growth. The HPC test (or Standard Plate Count), applied in many variants, is the internationally accepted test for measuring the hetrotrophic microorganism population in drinking water, and also other media. It measures only a fraction of the microorganisms actually present and does not distinguish between pathogens and non-pathogens. High levels of microbial growth can affect the taste and odor of drinking water and may indicate the presence of nutrients and biofilms which could harbor pathogens, as well as the possibility that some event has interfered with the normal production of the drinking water. HPC counts also routinely increase in water that has been treated by an in-line device such as a carbon filter or softener, in water-dispensing devices and in bottled waters and indeed in all water that has suitable nutrients, does not have a residual disinfectant, and is kept under sufficient conditions. There is debate among health professionals as to the need, utility or quantitative basis for health-based standards or guidelines relating to HPC-measured regrowth in drinking water. The issues that were addressed in this work include: the relationship between HPC in drinking water (including that derived from in-line treatment systems, dispensers and bottled water) and health risks for the general public the role of HPC as an indirect indicator or index for pathogens of concern in drinking water the role of HPC in assessing the efficacy and proper functioning of water treatment and supply processes the relationship between HPC and the aesthetic acceptability of drinking water. Heterotrophic Plate Counts and Drinking-water Safety provides valuable information on the utility and the limitations of HPC data in the management and operation of piped water systems as well as other means of providing drinking water to the public. It is of particular value to piped public water suppliers and bottled water suppliers, manufacturers and users of water treatment and transmission equipment and inline treatment devices, water engineers, sanitary and clinical microbiologists, and national and local public health officials and regulators of drinking water quality.
Microbial pollution is a key element of indoor air pollution. It is caused by hundreds of species of bacteria and fungi, in particular filamentous fungi (mould), growing indoors when sufficient moisture is available. This document provides a comprehensive review of the scientific evidence on health problems associated with building moisture and biological agents. The review concludes that the most important effects are increased prevalences of respiratory symptoms, allergies and asthma as well as perturbation of the immunological system. The document also summarizes the available information on the conditions that determine the presence of mould and measures to control their growth indoors. WHO guidelines for protecting public health are formulated on the basis of the review. The most important means for avoiding adverse health effects is the prevention (or minimization) of persistent dampness and microbial growth on interior surfaces and in building structures. [Ed.]
Use of coastal, estuarine and freshwater recreational environments has significant benefits for health and well-being, including rest, relaxation, exercise, cultural and religious practices, and aesthetic pleasure, while also providing substantial local, regional and national economic benefits. These guidelines focus on water quality management for coastal and freshwater environments to protect public health. The guidelines: 1. describe the current state of knowledge about the possible adverse health impacts of various forms of water pollution; and2. set out recommendations for setting national health-based targets, conducting surveillance and risk assessments, putting in place systems to monitor and control risks, and providing timely advice to users on water safety.These guidelines are aimed at national and local authorities, and other entities with an obligation to exercise due diligence relating to the safety of recreational water sites. They may be implemented in conjunction with other measures for water safety (such as drowning prevention and sun exposure) and measures for environmental protection of recreational water use sites.
This is the first book to focus entirely on viruses in foods. It collates information on the occurrence, detection, transmission, and epidemiology of viruses in various foods. Although methods for bacterial detection in food are available, methods for detection of viruses in food, with the exception of shellfish, are not available. It is important, therefore, to develop methods for direct examination of food for viruses and to explore alternate indicators that can accurately reflect the virological quality of food. This book addresses these issues along with strategies for the prevention and control of viral contamination of food.
Environmental Hygiene II deals with the evaluation of environmental pollutants and their relevance to human health. Main topics include mutagenic and carcinogenic activity of environmental chemicals, specific effects of heavy metals, special biological indicators for screening environmental contaminants and monitoring of indoor/outdoor air pollutants. Furthermore, assessment of exposure to environmental and occupational chemicals in man are presented as well as epidemiological studies on the health effects by environmental pollution, studies of inhalation toxicology and strategies and policy of environmental control.