Averaging Methods in Nonlinear Dynamical Systems

Averaging Methods in Nonlinear Dynamical Systems

Author: Jan A. Sanders

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 259

ISBN-13: 1475745753

DOWNLOAD EBOOK

In this book we have developed the asymptotic analysis of nonlinear dynamical systems. We have collected a large number of results, scattered throughout the literature and presented them in a way to illustrate both the underlying common theme, as well as the diversity of problems and solutions. While most of the results are known in the literature, we added new material which we hope will also be of interest to the specialists in this field. The basic theory is discussed in chapters two and three. Improved results are obtained in chapter four in the case of stable limit sets. In chapter five we treat averaging over several angles; here the theory is less standardized, and even in our simplified approach we encounter many open problems. Chapter six deals with the definition of normal form. After making the somewhat philosophical point as to what the right definition should look like, we derive the second order normal form in the Hamiltonian case, using the classical method of generating functions. In chapter seven we treat Hamiltonian systems. The resonances in two degrees of freedom are almost completely analyzed, while we give a survey of results obtained for three degrees of freedom systems. The appendices contain a mix of elementary results, expansions on the theory and research problems.


Averaging Methods in Nonlinear Dynamical Systems

Averaging Methods in Nonlinear Dynamical Systems

Author: Jan A. Sanders

Publisher: Springer Science & Business Media

Published: 2007-08-18

Total Pages: 447

ISBN-13: 0387489185

DOWNLOAD EBOOK

Perturbation theory and in particular normal form theory has shown strong growth in recent decades. This book is a drastic revision of the first edition of the averaging book. The updated chapters represent new insights in averaging, in particular its relation with dynamical systems and the theory of normal forms. Also new are survey appendices on invariant manifolds. One of the most striking features of the book is the collection of examples, which range from the very simple to some that are elaborate, realistic, and of considerable practical importance. Most of them are presented in careful detail and are illustrated with illuminating diagrams.


Nonlinear Differential Equations and Dynamical Systems

Nonlinear Differential Equations and Dynamical Systems

Author: Ferdinand Verhulst

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 287

ISBN-13: 3642971490

DOWNLOAD EBOOK

Bridging the gap between elementary courses and the research literature in this field, the book covers the basic concepts necessary to study differential equations. Stability theory is developed, starting with linearisation methods going back to Lyapunov and Poincaré, before moving on to the global direct method. The Poincaré-Lindstedt method is introduced to approximate periodic solutions, while at the same time proving existence by the implicit function theorem. The final part covers relaxation oscillations, bifurcation theory, centre manifolds, chaos in mappings and differential equations, and Hamiltonian systems. The subject material is presented from both the qualitative and the quantitative point of view, with many examples to illustrate the theory, enabling the reader to begin research after studying this book.


Normally Hyperbolic Invariant Manifolds in Dynamical Systems

Normally Hyperbolic Invariant Manifolds in Dynamical Systems

Author: Stephen Wiggins

Publisher: Springer Science & Business Media

Published: 2013-11-22

Total Pages: 198

ISBN-13: 1461243122

DOWNLOAD EBOOK

In the past ten years, there has been much progress in understanding the global dynamics of systems with several degrees-of-freedom. An important tool in these studies has been the theory of normally hyperbolic invariant manifolds and foliations of normally hyperbolic invariant manifolds. In recent years these techniques have been used for the development of global perturbation methods, the study of resonance phenomena in coupled oscillators, geometric singular perturbation theory, and the study of bursting phenomena in biological oscillators. "Invariant manifold theorems" have become standard tools for applied mathematicians, physicists, engineers, and virtually anyone working on nonlinear problems from a geometric viewpoint. In this book, the author gives a self-contained development of these ideas as well as proofs of the main theorems along the lines of the seminal works of Fenichel. In general, the Fenichel theory is very valuable for many applications, but it is not easy for people to get into from existing literature. This book provides an excellent avenue to that. Wiggins also describes a variety of settings where these techniques can be used in applications.


Ordinary Differential Equations and Dynamical Systems

Ordinary Differential Equations and Dynamical Systems

Author: Gerald Teschl

Publisher: American Mathematical Society

Published: 2024-01-12

Total Pages: 370

ISBN-13: 147047641X

DOWNLOAD EBOOK

This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm–Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincaré–Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman–Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale–Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.


Qualitative and Asymptotic Analysis of Differential Equations with Random Perturbations

Qualitative and Asymptotic Analysis of Differential Equations with Random Perturbations

Author: Anatoliy M. Samoilenko

Publisher: World Scientific

Published: 2011

Total Pages: 323

ISBN-13: 981432907X

DOWNLOAD EBOOK

1. Differential equations with random right-hand sides and impulsive effects. 1.1. An impulsive process as a solution of an impulsive system. 1.2. Dissipativity. 1.3. Stability and Lyapunov functions. 1.4. Stability of systems with permanently acting random perturbations. 1.5. Solutions periodic in the restricted sense. 1.6. Periodic solutions of systems with small perturbations. 1.7. Periodic solutions of linear impulsive systems. 1.8. Weakly nonlinear systems. 1.9. Comments and references -- 2. Invariant sets for systems with random perturbations. 2.1. Invariant sets for systems with random right-hand sides. 2.2. Invariant sets for stochastic Ito systems. 2.3. The behaviour of invariant sets under small perturbations. 2.4. A study of stability of an equilibrium via the reduction principle for systems with regular random perturbations. 2.5. Stability of an equilibrium and the reduction principle for Ito type systems. 2.6. A study of stability of the invariant set via the reduction principle. Regular perturbations. 2.7. Stability of invariant sets and the reduction principle for Ito type systems. 2.8. Comments and references -- 3. Linear and quasilinear stochastic Ito systems. 3.1. Mean square exponential dichotomy. 3.2. A study of dichotomy in terms of quadratic forms. 3.3. Linear system solutions that are mean square bounded on the semiaxis. 3.4. Quasilinear systems. 3.5. Linear system solutions that are probability bounded on the axis. A generalized notion of a solution. 3.6. Asymptotic equivalence of linear systems. 3.7. Conditions for asymptotic equivalence of nonlinear systems. 3.8. Comments and references -- 4. Extensions of Ito systems on a torus. 4.1. Stability of invariant tori. 4.2. Random invariant tori for linear extensions. 4.3. Smoothness of invariant tori. 4.4. Random invariant tori for nonlinear extensions. 4.5. An ergodic theorem for a class of stochastic systems having a toroidal manifold. 4.6. Comments and references -- 5. The averaging method for equations with random perturbations. 5.1. A substantiation of the averaging method for systems with impulsive effect. 5.2. Asymptotics of normalized deviations of averaged solutions. 5.3. Applications to the theory of nonlinear oscillations. 5.4. Averaging for systems with impulsive effects at random times. 5.5. The second theorem of M.M. Bogolyubov for systems with regular random perturbations. 5.6. Averaging for stochastic Ito systems. An asymptotically finite interval. 5.7. Averaging on the semiaxis. 5.8. The averaging method and two-sided bounded solutions of Ito systems. 5.9. Comments and references


Multiscale Methods

Multiscale Methods

Author: Grigoris Pavliotis

Publisher: Springer Science & Business Media

Published: 2008-01-18

Total Pages: 314

ISBN-13: 0387738290

DOWNLOAD EBOOK

This introduction to multiscale methods gives you a broad overview of the methods’ many uses and applications. The book begins by setting the theoretical foundations of the methods and then moves on to develop models and prove theorems. Extensive use of examples shows how to apply multiscale methods to solving a variety of problems. Exercises then enable you to build your own skills and put them into practice. Extensions and generalizations of the results presented in the book, as well as references to the literature, are provided in the Discussion and Bibliography section at the end of each chapter.With the exception of Chapter One, all chapters are supplemented with exercises.


Introduction to Functional Differential Equations

Introduction to Functional Differential Equations

Author: Jack K. Hale

Publisher: Springer Science & Business Media

Published: 2013-11-21

Total Pages: 458

ISBN-13: 1461243424

DOWNLOAD EBOOK

The present book builds upon an earlier work of J. Hale, "Theory of Func tional Differential Equations" published in 1977. We have tried to maintain the spirit of that book and have retained approximately one-third of the material intact. One major change was a complete new presentation of lin ear systems (Chapters 6~9) for retarded and neutral functional differential equations. The theory of dissipative systems (Chapter 4) and global at tractors was completely revamped as well as the invariant manifold theory (Chapter 10) near equilibrium points and periodic orbits. A more complete theory of neutral equations is presented (see Chapters 1, 2, 3, 9, and 10). Chapter 12 is completely new and contains a guide to active topics of re search. In the sections on supplementary remarks, we have included many references to recent literature, but, of course, not nearly all, because the subject is so extensive. Jack K. Hale Sjoerd M. Verduyn Lunel Contents Preface............................................................ v Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . 1. Linear differential difference equations . . . . . . . . . . . . . . 11 . . . . . . 1.1 Differential and difference equations. . . . . . . . . . . . . . . . . . . . 11 . . . . . . . . 1.2 Retarded differential difference equations. . . . . . . . . . . . . . . . 13 . . . . . . . 1.3 Exponential estimates of x( ¢,f) . . . . . . . . . . . . . . . . . . . . . 15 . . . . . . . . . . 1.4 The characteristic equation . . . . . . . . . . . . . . . . . . . . . . . . 17 . . . . . . . . . . . . 1.5 The fundamental solution. . . . . . . . . . . . . . . . . . . . . . . . . . 18 . . . . . . . . . . . . 1.6 The variation-of-constants formula............................. 23 1. 7 Neutral differential difference equations . . . . . . . . . . . . . . . . . 25 . . . . . . . 1.8 Supplementary remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 34 . . . . . . . . . . . . . 2. Functional differential equations: Basic theory . . . . . . . . 38 . . 2.1 Definition of a retarded equation. . . . . . . . . . . . . . . . . . . . . . 38 . . . . . . . . . 2.2 Existence, uniqueness, and continuous dependence . . . . . . . . . . 39 . . . 2.3 Continuation of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 44 . . . . . . . . . . . .


Random Perturbations of Dynamical Systems

Random Perturbations of Dynamical Systems

Author: Mark I. Freidlin

Publisher: Springer Science & Business Media

Published: 2012-05-31

Total Pages: 483

ISBN-13: 3642258476

DOWNLOAD EBOOK

Many notions and results presented in the previous editions of this volume have since become quite popular in applications, and many of them have been “rediscovered” in applied papers. In the present 3rd edition small changes were made to the chapters in which long-time behavior of the perturbed system is determined by large deviations. Most of these changes concern terminology. In particular, it is explained that the notion of sub-limiting distribution for a given initial point and a time scale is identical to the idea of metastability, that the stochastic resonance is a manifestation of metastability, and that the theory of this effect is a part of the large deviation theory. The reader will also find new comments on the notion of quasi-potential that the authors introduced more than forty years ago, and new references to recent papers in which the proofs of some conjectures included in previous editions have been obtained. Apart from the above mentioned changes the main innovations in the 3rd edition concern the averaging principle. A new Section on deterministic perturbations of one-degree-of-freedom systems was added in Chapter 8. It is shown there that pure deterministic perturbations of an oscillator may lead to a stochastic, in a certain sense, long-time behavior of the system, if the corresponding Hamiltonian has saddle points. The usefulness of a joint consideration of classical theory of deterministic perturbations together with stochastic perturbations is illustrated in this section. Also a new Chapter 9 has been inserted in which deterministic and stochastic perturbations of systems with many degrees of freedom are considered. Because of the resonances, stochastic regularization in this case is even more important.