Autonomic Intelligence Evolved Cooperative Networking offers a comprehensive advancement of the state-of-the art technological developments in the fields of Cooperative Networking and Autonomic Computing. Based on his track record in industrial standardisation, as well as academic and applied research, the author presents a fully-fledged Autonomic Cooperative Networking Architectural Model that encompasses the relevant workings of both the Layers of the Open Systems Interconnection Reference Model and the Levels of the Generic Autonomic Network Architecture. .
Cognitive networks can be crucial for the evolution of future communication systems; however, current trends have indicated major movement in other relevant fields towards the integration of different techniques for the realization of self-aware and self-adaptive communication systems. Evolution of Cognitive Networks and Self-Adaptive Communication Systems overviews innovative technologies combined for the formation of self-aware, self-adaptive, and self-organizing networks. By aiming to inform the research community and the related industry of solutions for cognitive networks, this book is essential for researchers, instructors, and professionals interested in clarifying the latest trends resulting in a unified realization for cognitive networking and communication systems.
Autonomic networking aims to solve the mounting problems created by increasingly complex networks, by enabling devices and service-providers to decide, preferably without human intervention, what to do at any given moment, and ultimately to create self-managing networks that can interface with each other, adapting their behavior to provide the best service to the end-user in all situations. This book gives both an understanding and an assessment of the principles, methods and architectures in autonomous network management, as well as lessons learned from, the ongoing initiatives in the field. It includes contributions from industry groups at Orange Labs, Motorola, Ericsson, the ANA EU Project and leading universities. These groups all provide chapters examining the international research projects to which they are contributing, such as the EU Autonomic Network Architecture Project and Ambient Networks EU Project, reviewing current developments and demonstrating how autonomic management principles are used to define new architectures, models, protocols, and mechanisms for future network equipment. - Provides reviews of cutting-edge approaches to the management of complex telecommunications, sensors, etc. networks based on new autonomic approaches. This enables engineers to use new autonomic techniques to solve complex distributed problems that are not possible or easy to solve with existing techniques. - Discussion of FOCALE, a semantically rich network architecture for coordinating the behavior of heterogeneous and distributed computing resources. This provides vital information, since the data model holds much of the power in an autonomic system, giving the theory behind the practice, which will enable engineers to create their own solutions to network management problems. - Real case studies from the groups in industry and academia who work with this technology. These allow engineers to see how autonomic networking is implemented in a variety of scenarios, giving them a solid grounding in applications and helping them generate their own solutions to real-world problems.
New paradigms for communication/networking systems are needed in order to tackle the emerging issues such as heterogeneity, complexity and management of evolvable infrastructures. In order to realize such advanced systems, approaches should become task- and knowledge-driven, enabling a service-oriented, requirement, and trust-driven development of communication networks. The networking and seamless integration of concepts, technologies and devices in a dynamically changing environment poses many challenges to the research community, including interoperability, programmability, management, openness, reliability, performance, context awareness, intelligence, autonomy, security, privacy, safety, and semantics. This edited volume explores the challenges of technologies to realize the vision where devices and applications seamlessly interconnect, intelligently cooperate, and autonomously manage themselves, and as a result, the borders of virtual and real world vanish or become significantly blurred.
The Second IFIP Workshop on Autonomic Communication (WAC 2005) took place on October 2–5, 2005, in Athens, Greece. The previous (and first) edition of WAC took place in Berlin in 2004 and its next (and third) edition in Paris in 2006. The workshop was organized by the National and Kapodistrian University of Athens and was supported by the EU-funded IST-FET Autonomic Communication Coordination Action (ACCA – IST-6475). Additional support was provided by the EU-funded IST Network of Excellence E-NEXT (IST-506869). Finally, IFIP TC6 provided scientific sponsorship through Working Groups IFIP WG6. 6 (Management of Networks and Distributed Systems) and IFIP WG6. 3 (Performance of Communication Systems). The workshop was organized at a time when the – yet to be well defined – field of autonomic communication (AC) is attracting the interest of both the scientific community and the research funding organizations. The latter is manifested, on one hand, by the numerous recent relevant research exploratory forums, workshop panels, preliminary forward-looking position papers, research outlooks and frameworks and, on the other hand, by the commitment of the FET program of the European Commission in Europe to funding long-term research in this area for the next four years. Consequently, the second edition of WAC was highly exploratory and included a nice mix of technical work addressing some already identified problems and well-articulated ideas on the direction this field should take and the fundamental problems whose solution would enable autonomicity.
Learn about the latest in cognitive and autonomous network management Towards Cognitive Autonomous Networks: Network Management Automation for 5G and Beyond delivers a comprehensive understanding of the current state-of-the-art in cognitive and autonomous network operation. Authors Mwanje and Bell fully describe todays capabilities while explaining the future potential of these powerful technologies. This book advocates for autonomy in new 5G networks, arguing that the virtualization of network functions render autonomy an absolute necessity. Following that, the authors move on to comprehensively explain the background and history of large networks, and how we come to find ourselves in the place were in now. Towards Cognitive Autonomous Networks describes several novel techniques and applications of cognition and autonomy required for end-to-end cognition including: • Configuration of autonomous networks • Operation of autonomous networks • Optimization of autonomous networks • Self-healing autonomous networks The book concludes with an examination of the extensive challenges facing completely autonomous networks now and in the future.
Cognitive Hyperconnected Digital Transformation provides an overview of the current Internet of Things (IoT) landscape, ranging from research, innovation and development priorities to enabling technologies in a global context. It is intended as a standalone book in a series that covers the Internet of Things activities of the IERC-Internet of Things European Research Cluster, including both research and technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT-EPI) and the IoT European Large-Scale Pilots Programme, presenting global views and state-of-the-art results regarding the challenges facing IoT research, innovation, development and deployment in the next years. Hyperconnected environments integrating industrial/business/consumer IoT technologies and applications require new IoT open systems architectures integrated with network architecture (a knowledge-centric network for IoT), IoT system design and open, horizontal and interoperable platforms managing things that are digital, automated and connected and that function in real-time with remote access and control based on Internet-enabled tools. The IoT is bridging the physical world with the virtual world by combining augmented reality (AR), virtual reality (VR), machine learning and artificial intelligence (AI) to support the physical-digital integrations in the Internet of mobile things based on sensors/actuators, communication, analytics technologies, cyber-physical systems, software, cognitive systems and IoT platforms with multiple functionalities. These IoT systems have the potential to understand, learn, predict, adapt and operate autonomously. They can change future behaviour, while the combination of extensive parallel processing power, advanced algorithms and data sets feed the cognitive algorithms that allow the IoT systems to develop new services and propose new solutions. IoT technologies are moving into the industrial space and enhancing traditional industrial platforms with solutions that break free of device-, operating system- and protocol-dependency. Secure edge computing solutions replace local networks, web services replace software, and devices with networked programmable logic controllers (NPLCs) based on Internet protocols replace devices that use proprietary protocols. Information captured by edge devices on the factory floor is secure and accessible from any location in real time, opening the communication gateway both vertically (connecting machines across the factory and enabling the instant availability of data to stakeholders within operational silos) and horizontally (with one framework for the entire supply chain, across departments, business units, global factory locations and other markets). End-to-end security and privacy solutions in IoT space require agile, context-aware and scalable components with mechanisms that are both fluid and adaptive. The convergence of IT (information technology) and OT (operational technology) makes security and privacy by default a new important element where security is addressed at the architecture level, across applications and domains, using multi-layered distributed security measures. Blockchain is transforming industry operating models by adding trust to untrusted environments, providing distributed security mechanisms and transparent access to the information in the chain. Digital technology platforms are evolving, with IoT platforms integrating complex information systems, customer experience, analytics and intelligence to enable new capabilities and business models for digital business.
In the early 1990s, NASA Goddard Space Flight Center started researching and developing autonomous and autonomic ground and spacecraft control systems for future NASA missions. This research started by experimenting with and developing expert systems to automate ground station software and reduce the number of people needed to control a spacecraft. This was followed by research into agent-based technology to develop autonomous ground c- trol and spacecraft. Research into this area has now evolved into using the concepts of autonomic systems to make future space missions self-managing and giving them a high degree of survivability in the harsh environments in which they operate. This book describes much of the results of this research. In addition, it aimstodiscusstheneededsoftwaretomakefutureNASAspacemissionsmore completelyautonomousandautonomic.Thecoreofthesoftwareforthesenew missions has been written for other applications or is being applied gradually in current missions, or is in current development. It is intended that this book should document how NASA missions are becoming more autonomous and autonomic and should point to the way of making future missions highly - tonomous and autonomic. What is not covered is the supporting hardware of these missions or the intricate software that implements orbit and at- tude determination, on-board resource allocation, or planning and scheduling (though we refer to these technologies and give references for the interested reader).