Automatic Text Summarization

Automatic Text Summarization

Author: Juan-Manuel Torres-Moreno

Publisher: John Wiley & Sons

Published: 2014-11-10

Total Pages: 368

ISBN-13: 1848216688

DOWNLOAD EBOOK

Textual information in the form of digital documents quickly accumulates to create huge amounts of data. The majority of these documents are unstructured: it is unrestricted text and has not been organized into traditional databases. Processing documents is therefore a perfunctory task, mostly due to a lack of standards. It has thus become extremely difficult to implement automatic text analysis tasks. Automatic Text Summarization (ATS), by condensing the text while maintaining relevant information, can help to process this ever-increasing, difficult-to-handle, mass of information. This book examines the motivations and different algorithms for ATS. The author presents the recent state of the art before describing the main problems of ATS, as well as the difficulties and solutions provided by the community. The book provides recent advances in ATS, as well as current applications and trends. The approaches are statistical, linguistic and symbolic. Several examples are also included in order to clarify the theoretical concepts.


Advances in Automatic Text Summarization

Advances in Automatic Text Summarization

Author: Inderjeet Mani

Publisher: MIT Press

Published: 1999

Total Pages: 464

ISBN-13: 9780262133593

DOWNLOAD EBOOK

ntil now there has been no state-of-the-art collection of themost important writings in automatic text summarization. This bookpresents the key developments in the field in an integrated frameworkand suggests future research areas. With the rapid growth of the World Wide Web and electronic information services, information is becoming available on-line at an incredible rate. One result is the oft-decried information overload. No one has time to read everything, yet we often have to make critical decisions based on what we are able to assimilate. The technology of automatic text summarization is becoming indispensable for dealing with this problem. Text summarization is the process of distilling the most important information from a source to produce an abridged version for a particular user or task. Until now there has been no state-of-the-art collection of the most important writings in automatic text summarization. This book presents the key developments in the field in an integrated framework and suggests future research areas. The book is organized into six sections: Classical Approaches, Corpus-Based Approaches, Exploiting Discourse Structure, Knowledge-Rich Approaches, Evaluation Methods, and New Summarization Problem Areas. Contributors D. A. Adams, C. Aone, R. Barzilay, E. Bloedorn, B. Boguraev, R. Brandow, C. Buckley, F. Chen, M. J. Chrzanowski, H. P. Edmundson, M. Elhadad, T. Firmin, R. P. Futrelle, J. Gorlinsky, U. Hahn, E. Hovy, D. Jang, K. Sparck Jones, G. M. Kasper, C. Kennedy, K. Kukich, J. Kupiec, B. Larsen, W. G. Lehnert, C. Lin, H. P. Luhn, I. Mani, D. Marcu, M. Maybury, K. McKeown, A. Merlino, M. Mitra, K. Mitze, M. Moens, A. H. Morris, S. H. Myaeng, M. E. Okurowski, J. Pedersen, J. J. Pollock, D. R. Radev, G. J. Rath, L. F. Rau, U. Reimer, A. Resnick, J. Robin, G. Salton, T. R. Savage, A. Singhal, G. Stein, T. Strzalkowski, S. Teufel, J. Wang, B. Wise, A. Zamora


Natural Language Processing: Concepts, Methodologies, Tools, and Applications

Natural Language Processing: Concepts, Methodologies, Tools, and Applications

Author: Management Association, Information Resources

Publisher: IGI Global

Published: 2019-11-01

Total Pages: 1704

ISBN-13: 1799809528

DOWNLOAD EBOOK

As technology continues to become more sophisticated, a computer’s ability to understand, interpret, and manipulate natural language is also accelerating. Persistent research in the field of natural language processing enables an understanding of the world around us, in addition to opportunities for manmade computing to mirror natural language processes that have existed for centuries. Natural Language Processing: Concepts, Methodologies, Tools, and Applications is a vital reference source on the latest concepts, processes, and techniques for communication between computers and humans. Highlighting a range of topics such as machine learning, computational linguistics, and semantic analysis, this multi-volume book is ideally designed for computer engineers, computer and software developers, IT professionals, academicians, researchers, and upper-level students seeking current research on the latest trends in the field of natural language processing.


Automatic Summarization

Automatic Summarization

Author: Inderjeet Mani

Publisher: John Benjamins Publishing

Published: 2001

Total Pages: 304

ISBN-13: 9789027249869

DOWNLOAD EBOOK

With the explosion in the quantity of on-line text and multimedia information in recent years, there has been a renewed interest in automatic summarization. This book provides a systematic introduction to the field, explaining basic definitions, the strategies used by human summarizers, and automatic methods that leverage linguistic and statistical knowledge to produce extracts and abstracts. Drawing from a wealth of research in artificial intelligence, natural language processing, and information retrieval, the book also includes detailed assessments of evaluation methods and new topics such as multi-document and multimedia summarization. Previous automatic summarization books have been either collections of specialized papers, or else authored books with only a chapter or two devoted to the field as a whole. This is the first textbook on the subject, developed based on teaching materials used in two one-semester courses. To further help the student reader, the book includes detailed case studies, accompanied by end-of-chapter reviews and an extensive glossary.Audience: students and researchers, as well as information technology managers, librarians, and anyone else interested in the subject.


Trends and Applications of Text Summarization Techniques

Trends and Applications of Text Summarization Techniques

Author: Fiori, Alessandro

Publisher: IGI Global

Published: 2019-08-30

Total Pages: 356

ISBN-13: 1522593756

DOWNLOAD EBOOK

While the availability of electronic documents increases exponentially with advancing technology, the time spent to process this wealth of resourceful information decreases. Content analysis and information extraction must be aided by summarization methods to quickly parcel pieces of interest and allow for succinct user familiarization in a simple, efficient manner. Trends and Applications of Text Summarization Techniques is a pivotal reference source that explores the latest approaches of document summarization including update, multi-lingual, and domain-oriented summarization tasks and examines their current real-world applications in multiple fields. Featuring coverage on a wide range of topics such as parallel construction, social network integration, and evaluation metrics, this book is ideally designed for information technology practitioners, computer scientists, bioinformatics analysts, business managers, healthcare professionals, academicians, researchers, and students.


Advances in Artificial Intelligence -- IBERAMIA 2004

Advances in Artificial Intelligence -- IBERAMIA 2004

Author: Christian Lemaitre

Publisher: Springer

Published: 2004-11-03

Total Pages: 1005

ISBN-13: 3540304983

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 9th Ibero-American Conference on Artificial Intelligence, IBERAMIA 2004, held in Puebla, Mexico in November 2004. The 97 revised full papers presented were carefully reviewed and selected from 304 submissions. The papers are organized in topical sections on distributed AI and multi-agent systems, knowledge engineering and case-based reasoning, planning and scheduling, machine learning and knowledge acquisition, natural language processing, knowledge representation and reasoning, knowledge discovery and data mining, robotics, computer vision, uncertainty and fuzzy systems, genetic algorithms and neural networks, AI in education, and miscellaneous topics.


Proceedings of the Third International Conference on Computational Intelligence and Informatics

Proceedings of the Third International Conference on Computational Intelligence and Informatics

Author: K. Srujan Raju

Publisher: Springer Nature

Published: 2020-03-17

Total Pages: 881

ISBN-13: 9811514801

DOWNLOAD EBOOK

This book features high-quality papers presented at the International Conference on Computational Intelligence and Informatics (ICCII 2018), which was held on 28–29 December 2018 at the Department of Computer Science and Engineering, JNTUH College of Engineering, Hyderabad, India. The papers focus on topics such as data mining, wireless sensor networks, parallel computing, image processing, network security, MANETS, natural language processing and Internet of things.


Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2013

Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2013

Author: Suresh Chandra Satapathy

Publisher: Springer Science & Business Media

Published: 2013-10-05

Total Pages: 553

ISBN-13: 3319029312

DOWNLOAD EBOOK

This volume contains the papers presented at the Second International Conference on Frontiers in Intelligent Computing: Theory and Applications (FICTA-2013) held during 14-16 November 2013 organized by Bhubaneswar Engineering College (BEC), Bhubaneswar, Odisha, India. It contains 63 papers focusing on application of intelligent techniques which includes evolutionary computation techniques like genetic algorithm, particle swarm optimization techniques, teaching-learning based optimization etc for various engineering applications such as data mining, Fuzzy systems, Machine Intelligence and ANN, Web technologies and Multimedia applications and Intelligent computing and Networking etc.


Automatic Summarization

Automatic Summarization

Author: Ani Nenkova

Publisher: Now Publishers Inc

Published: 2011

Total Pages: 144

ISBN-13: 1601984707

DOWNLOAD EBOOK

Automatic Summarization is a comprehensive overview of research in summarization, including the more traditional efforts in sentence extraction as well as the most novel recent approaches for determining important content, for domain and genre specific summarization and for evaluation of summarization


Deep Learning for Natural Language Processing

Deep Learning for Natural Language Processing

Author: Stephan Raaijmakers

Publisher: Simon and Schuster

Published: 2022-12-20

Total Pages: 294

ISBN-13: 1638353999

DOWNLOAD EBOOK

Explore the most challenging issues of natural language processing, and learn how to solve them with cutting-edge deep learning! Inside Deep Learning for Natural Language Processing you’ll find a wealth of NLP insights, including: An overview of NLP and deep learning One-hot text representations Word embeddings Models for textual similarity Sequential NLP Semantic role labeling Deep memory-based NLP Linguistic structure Hyperparameters for deep NLP Deep learning has advanced natural language processing to exciting new levels and powerful new applications! For the first time, computer systems can achieve "human" levels of summarizing, making connections, and other tasks that require comprehension and context. Deep Learning for Natural Language Processing reveals the groundbreaking techniques that make these innovations possible. Stephan Raaijmakers distills his extensive knowledge into useful best practices, real-world applications, and the inner workings of top NLP algorithms. About the technology Deep learning has transformed the field of natural language processing. Neural networks recognize not just words and phrases, but also patterns. Models infer meaning from context, and determine emotional tone. Powerful deep learning-based NLP models open up a goldmine of potential uses. About the book Deep Learning for Natural Language Processing teaches you how to create advanced NLP applications using Python and the Keras deep learning library. You’ll learn to use state-of the-art tools and techniques including BERT and XLNET, multitask learning, and deep memory-based NLP. Fascinating examples give you hands-on experience with a variety of real world NLP applications. Plus, the detailed code discussions show you exactly how to adapt each example to your own uses! What's inside Improve question answering with sequential NLP Boost performance with linguistic multitask learning Accurately interpret linguistic structure Master multiple word embedding techniques About the reader For readers with intermediate Python skills and a general knowledge of NLP. No experience with deep learning is required. About the author Stephan Raaijmakers is professor of Communicative AI at Leiden University and a senior scientist at The Netherlands Organization for Applied Scientific Research (TNO). Table of Contents PART 1 INTRODUCTION 1 Deep learning for NLP 2 Deep learning and language: The basics 3 Text embeddings PART 2 DEEP NLP 4 Textual similarity 5 Sequential NLP 6 Episodic memory for NLP PART 3 ADVANCED TOPICS 7 Attention 8 Multitask learning 9 Transformers 10 Applications of Transformers: Hands-on with BERT