Atomic-Scale Modelling of Electrochemical Systems

Atomic-Scale Modelling of Electrochemical Systems

Author: Marko M. Melander

Publisher: John Wiley & Sons

Published: 2021-09-09

Total Pages: 372

ISBN-13: 1119605636

DOWNLOAD EBOOK

Atomic-Scale Modelling of Electrochemical Systems A comprehensive overview of atomistic computational electrochemistry, discussing methods, implementation, and state-of-the-art applications in the field The first book to review state-of-the-art computational and theoretical methods for modelling, understanding, and predicting the properties of electrochemical interfaces. This book presents a detailed description of the current methods, their background, limitations, and use for addressing the electrochemical interface and reactions. It also highlights several applications in electrocatalysis and electrochemistry. Atomic-Scale Modelling of Electrochemical Systems discusses different ways of including the electrode potential in the computational setup and fixed potential calculations within the framework of grand canonical density functional theory. It examines classical and quantum mechanical models for the solid-liquid interface and formation of an electrochemical double-layer using molecular dynamics and/or continuum descriptions. A thermodynamic description of the interface and reactions taking place at the interface as a function of the electrode potential is provided, as are novel ways to describe rates of heterogeneous electron transfer, proton-coupled electron transfer, and other electrocatalytic reactions. The book also covers multiscale modelling, where atomic level information is used for predicting experimental observables to enable direct comparison with experiments, to rationalize experimental results, and to predict the following electrochemical performance. Uniquely explains how to understand, predict, and optimize the properties and reactivity of electrochemical interfaces starting from the atomic scale Uses an engaging “tutorial style” presentation, highlighting a solid physicochemical background, computational implementation, and applications for different methods, including merits and limitations Bridges the gap between experimental electrochemistry and computational atomistic modelling Written by a team of experts within the field of computational electrochemistry and the wider computational condensed matter community, this book serves as an introduction to the subject for readers entering the field of atom-level electrochemical modeling, while also serving as an invaluable reference for advanced practitioners already working in the field.


Atomic-Scale Modeling of Nanosystems and Nanostructured Materials

Atomic-Scale Modeling of Nanosystems and Nanostructured Materials

Author: Carlo Massobrio

Publisher: Springer

Published: 2010-01-19

Total Pages: 382

ISBN-13: 3642046509

DOWNLOAD EBOOK

Understanding the structural organization of materials at the atomic scale is a lo- standing challenge of condensed matter physics and chemistry. By reducing the size of synthesized systems down to the nanometer, or by constructing them as collection of nanoscale size constitutive units, researchers are faced with the task of going beyond models and interpretations based on bulk behavior. Among the wealth of new materials having in common a “nanoscale” ngerprint, one can encounter systems intrinsically extending to a few nanometers (clusters of various compo- tions), systems featuring at least one spatial dimension not repeated periodically in space and assemblies of nanoscale grains forming extended compounds. For all these cases, there is a compelling need of an atomic-scale information combining knowledge of the topology of the system and of its bonding behavior, based on the electronic structure and its interplay with the atomic con gurations. Recent dev- opments in computer architectures and progresses in available computational power have made possible the practical realization of a paradygma that appeared totally unrealistic at the outset of computer simulations in materials science. This consists inbeing able to parallel (at least inprinciple) any experimental effort by asimulation counterpart, this occurring at the scale most appropriate to complement and enrich the experiment.


Retooling Manufacturing

Retooling Manufacturing

Author: National Research Council

Publisher: National Academies Press

Published: 2004-09-30

Total Pages: 123

ISBN-13: 0309092663

DOWNLOAD EBOOK

As the Department of Defense continues development of the future warrior system, the difficulty of moving rapidly from design to manufacturing for complex technologies is becoming a major concern. In particular, there are communication gaps between design and manufacturing that hinder rapid development of new products important for these future military developments. To help address those concerns, DOD asked the NRC to develop a framework for "bridging" these gaps through data management, modeling, and simulation. This report presents the results of this study. It provides a framework for virtual design and manufacturing and an assessment of the necessary tools; an analysis of the economic dimensions; an examination of barriers to virtual design and manufacturing in the DOD acquisition process; and a series of recommendations and research needs.


Comprehensive Nuclear Materials

Comprehensive Nuclear Materials

Author:

Publisher: Elsevier

Published: 2020-07-22

Total Pages: 4871

ISBN-13: 0081028660

DOWNLOAD EBOOK

Materials in a nuclear environment are exposed to extreme conditions of radiation, temperature and/or corrosion, and in many cases the combination of these makes the material behavior very different from conventional materials. This is evident for the four major technological challenges the nuclear technology domain is facing currently: (i) long-term operation of existing Generation II nuclear power plants, (ii) the design of the next generation reactors (Generation IV), (iii) the construction of the ITER fusion reactor in Cadarache (France), (iv) and the intermediate and final disposal of nuclear waste. In order to address these challenges, engineers and designers need to know the properties of a wide variety of materials under these conditions and to understand the underlying processes affecting changes in their behavior, in order to assess their performance and to determine the limits of operation. Comprehensive Nuclear Materials, Second Edition, Seven Volume Set provides broad ranging, validated summaries of all the major topics in the field of nuclear material research for fission as well as fusion reactor systems. Attention is given to the fundamental scientific aspects of nuclear materials: fuel and structural materials for fission reactors, waste materials, and materials for fusion reactors. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource of information. Most of the chapters from the first Edition have been revised and updated and a significant number of new topics are covered in completely new material. During the ten years between the two editions, the challenge for applications of nuclear materials has been significantly impacted by world events, public awareness, and technological innovation. Materials play a key role as enablers of new technologies, and we trust that this new edition of Comprehensive Nuclear Materials has captured the key recent developments. Critically reviews the major classes and functions of materials, supporting the selection, assessment, validation and engineering of materials in extreme nuclear environments Comprehensive resource for up-to-date and authoritative information which is not always available elsewhere, even in journals Provides an in-depth treatment of materials modeling and simulation, with a specific focus on nuclear issues Serves as an excellent entry point for students and researchers new to the field


Atomic-Scale Analytical Tomography

Atomic-Scale Analytical Tomography

Author: Thomas F. Kelly

Publisher: Cambridge University Press

Published: 2022-03-24

Total Pages:

ISBN-13: 1009254863

DOWNLOAD EBOOK

A comprehensive guide on Atomic-Scale Analytical Tomography (ASAT) that discusses basic concepts and implications of the technique in areas such as material sciences, microscopy, engineering sciences and several interdisciplinary avenues. The title interrogates how to successfully achieve ASAT at the intersection of transmission electron microscopy and atom probe microscopy. This novel concept is capable of identifying individual atoms in large volumes as well as in 3D, with high spatial resolution. Written by leading experts from academia and industry, this book serves as a guide with real-world applications on cutting-edge research problems. An essential reading for researchers, engineers and practitioners interested in nanoscale characterisation, this book introduces the reader to a new direction for atomic-scale microscopy.


Fundamentals of Materials Science and Engineering

Fundamentals of Materials Science and Engineering

Author: William D. Callister, Jr.

Publisher: John Wiley & Sons

Published: 2020-07-28

Total Pages: 960

ISBN-13: 1119723671

DOWNLOAD EBOOK

This text is an unbound, three hole punched version. Fundamentals of Materials Science and Engineering: An Integrated Approach, Binder Ready Version, 5th Edition takes an integrated approach to the sequence of topics – one specific structure, characteristic, or property type is covered in turn for all three basic material types: metals, ceramics, and polymeric materials. This presentation permits the early introduction of non-metals and supports the engineer's role in choosing materials based upon their characteristics. Using clear, concise terminology that is familiar to students, Fundamentals presents material at an appropriate level for both student comprehension and instructors who may not have a materials background. This text is an unbound, three hole punched version. Access to WileyPLUS sold separately.