Atomic Layer Deposition for Semiconductors

Atomic Layer Deposition for Semiconductors

Author: Cheol Seong Hwang

Publisher: Springer Science & Business Media

Published: 2013-10-18

Total Pages: 266

ISBN-13: 146148054X

DOWNLOAD EBOOK

Offering thorough coverage of atomic layer deposition (ALD), this book moves from basic chemistry of ALD and modeling of processes to examine ALD in memory, logic devices and machines. Reviews history, operating principles and ALD processes for each device.


Handbook of Manufacturing Engineering and Technology

Handbook of Manufacturing Engineering and Technology

Author: Andrew Y. C. Nee

Publisher: Springer

Published: 2014-10-31

Total Pages: 0

ISBN-13: 9781447146698

DOWNLOAD EBOOK

The Springer Reference Work Handbook of Manufacturing Engineering and Technology provides overviews and in-depth and authoritative analyses on the basic and cutting-edge manufacturing technologies and sciences across a broad spectrum of areas. These topics are commonly encountered in industries as well as in academia. Manufacturing engineering curricula across universities are now essential topics covered in major universities worldwide.


Atomic Layer Deposition of Nanostructured Materials

Atomic Layer Deposition of Nanostructured Materials

Author: Nicola Pinna

Publisher: John Wiley & Sons

Published: 2012-09-19

Total Pages: 463

ISBN-13: 3527639926

DOWNLOAD EBOOK

Atomic layer deposition, formerly called atomic layer epitaxy, was developed in the 1970s to meet the needs of producing high-quality, large-area fl at displays with perfect structure and process controllability. Nowadays, creating nanomaterials and producing nanostructures with structural perfection is an important goal for many applications in nanotechnology. As ALD is one of the important techniques which offers good control over the surface structures created, it is more and more in the focus of scientists. The book is structured in such a way to fi t both the need of the expert reader (due to the systematic presentation of the results at the forefront of the technique and their applications) and the ones of students and newcomers to the fi eld (through the first part detailing the basic aspects of the technique). This book is a must-have for all Materials Scientists, Surface Chemists, Physicists, and Scientists in the Semiconductor Industry.


Molecular Networks

Molecular Networks

Author: Mir Wais Hosseini

Publisher: Springer Science & Business Media

Published: 2009-06-29

Total Pages: 173

ISBN-13: 364201366X

DOWNLOAD EBOOK

In the future, many modern materials will be increasingly based on the assembly of preformed molecular entities. Their structural characteristics and functional prop- ties will be programmed at the molecular level and their formation as a completed entity will be achieved by self-assembly processes. This in essence is a bottom-up approach and its success will require a deep understanding not only of the chemistry of intermolecular interactions and associations but also of self-assembly processes in the condensed phase. Among various interesting innovations brought about by the development of supramolecular chemistry, supramolecular synthesis is a part- ularly powerful approach for the design and generation of molecular architectures displaying both structural and functional complexity. The combination of mol- ular synthesis (which allows chemists to design and prepare extremely sophis- cated biotic and abiotic molecules through the interconnection of atoms or group of atoms by strong covalent bonds) and supramolecular synthesis (which orch- trates the association of molecules by recognition processes through the use of weak and reversible interactions) opens up endless structural and functional possibilities. Following the perceptive observation by Dunitz that "A crystal is, in a sense, the supramolecule par excellence", molecular crystals may be seen as in'nite periodic architectures resulting from the interconnection of building blocks or tectons ca- ble of self-assembling through speci'c recognising events.


Materials Science

Materials Science

Author: Yitzhak Mastai

Publisher: BoD – Books on Demand

Published: 2013-06-10

Total Pages: 563

ISBN-13: 953511140X

DOWNLOAD EBOOK

Today modern materials science is a vibrant, emerging scientific discipline at the forefront of physics, chemistry, engineering, biology and medicine, and is becoming increasingly international in scope as demonstrated by emerging international and intercontinental collaborations and exchanges. The overall purpose of this book is to provide timely and in-depth coverage of selected advanced topics in materials science. Divided into five sections, this book provides the latest research developments in many aspects of materials science. This book is of interest to both fundamental research and also to practicing scientists and will prove invaluable to all chemical engineers, industrial chemists and students in industry and academia.


Atomic Layer Deposition in Energy Conversion Applications

Atomic Layer Deposition in Energy Conversion Applications

Author: Julien Bachmann

Publisher: John Wiley & Sons

Published: 2017-03-15

Total Pages: 366

ISBN-13: 3527694838

DOWNLOAD EBOOK

Combining the two topics for the first time, this book begins with an introduction to the recent challenges in energy conversion devices from a materials preparation perspective and how they can be overcome by using atomic layer deposition (ALD). By bridging these subjects it helps ALD specialists to understand the requirements within the energy conversion field, and researchers in energy conversion to become acquainted with the opportunities offered by ALD. With its main focus on applications of ALD for photovoltaics, electrochemical energy storage, and photo- and electrochemical devices, this is important reading for materials scientists, surface chemists, electrochemists, electrotechnicians, physicists, and those working in the semiconductor industry.


Materials Chemistry

Materials Chemistry

Author: Bradley D. Fahlman

Publisher: Springer

Published: 2018-08-28

Total Pages: 817

ISBN-13: 9402412557

DOWNLOAD EBOOK

The 3rd edition of this successful textbook continues to build on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field — in a concise format. The 3rd edition offers significant updates throughout, with expanded sections on sustainability, energy storage, metal-organic frameworks, solid electrolytes, solvothermal/microwave syntheses, integrated circuits, and nanotoxicity. Most appropriate for Junior/Senior undergraduate students, as well as first-year graduate students in chemistry, physics, or engineering fields, Materials Chemistry may also serve as a valuable reference to industrial researchers. Each chapter concludes with a section that describes important materials applications, and an updated list of thought-provoking questions.


Atomic Layer Deposition

Atomic Layer Deposition

Author: Tommi Kääriäinen

Publisher: John Wiley & Sons

Published: 2013-05-28

Total Pages: 274

ISBN-13: 1118062779

DOWNLOAD EBOOK

Since the first edition was published in 2008, Atomic Layer Deposition (ALD) has emerged as a powerful, and sometimes preferred, deposition technology. The new edition of this groundbreaking monograph is the first text to review the subject of ALD comprehensively from a practical perspective. It covers ALD's application to microelectronics (MEMS) and nanotechnology; many important new and emerging applications; thermal processes for ALD growth of nanometer thick films of semiconductors, oxides, metals and nitrides; and the formation of organic and hybrid materials.


CVD Polymers

CVD Polymers

Author: Karen K. Gleason

Publisher: John Wiley & Sons

Published: 2015-04-01

Total Pages: 484

ISBN-13: 352769028X

DOWNLOAD EBOOK

The method of CVD (chemical vapor deposition) is a versatile technique to fabricate high-quality thin films and structured surfaces in the nanometer regime from the vapor phase. Already widely used for the deposition of inorganic materials in the semiconductor industry, CVD has become the method of choice in many applications to process polymers as well. This highly scalable technique allows for synthesizing high-purity, defect-free films and for systematically tuning their chemical, mechanical and physical properties. In addition, vapor phase processing is critical for the deposition of insoluble materials including fluoropolymers, electrically conductive polymers, and highly crosslinked organic networks. Furthermore, CVD enables the coating of substrates which would otherwise dissolve or swell upon exposure to solvents. The scope of the book encompasses CVD polymerization processes which directly translate the chemical mechanisms of traditional polymer synthesis and organic synthesis in homogeneous liquids into heterogeneous processes for the modification of solid surfaces. The book is structured into four parts, complemented by an introductory overview of the diverse process strategies for CVD of polymeric materials. The first part on the fundamentals of CVD polymers is followed by a detailed coverage of the materials chemistry of CVD polymers, including the main synthesis mechanisms and the resultant classes of materials. The third part focuses on the applications of these materials such as membrane modification and device fabrication. The final part discusses the potential for scale-up and commercialization of CVD polymers.