This book compares and offers a comprehensive overview of nine analytical techniques important in material science and many other branches of science. All these methods are already well adapted to applications in diverse fields such as medical, environmental studies, archaeology, and materials science. This clearly presented reference describes and compares the principles of the methods and the various source and detector types.
This book compares and offers a comprehensive overview of nine analytical techniques important in material science and many other branches of science. All these methods are already well adapted to applications in diverse fields such as medical, environmental studies, archaeology, and materials science. This clearly presented reference describes and compares the principles of the methods and the various source and detector types.
The IAEA has compiled this overview of current applications of nuclear analytical techniques (NATs). The contributions included in this book describe a variety of nuclear techniques and applications, such as those in the fields of environment and health, industrial processes, non-destructive testing, forensic and archaeological investigations, cosmochemistry and method validation. The techniques covered range from classical instrumental neutron activation analysis (INAA), its radiochemical derivative RNAA, in-beam methods such as prompt y neutron activation analysis (PGNAA) and accelerator mass spectrometry (AMS), to X ray fluorescence (XRF) and proton induced X ray emission (PIXE) spectroscopy. Isotopic techniques to investigate element behaviour in biology and medicine, and also to validate other non-nuclear analytical techniques, are described. Destructive and non-destructiveapproaches are presented, along with their use to investigate very small and very large samples, archaeological samples and extraterrestrial samples. Several nuclear analytical applications in industry are described that have considerable socioeconomic impact wherever they can be implemented.
Accurate uranium analysis, and particularly for isotope measurements, is essential in many fields, including environmental studies, geology, hydrogeology, the nuclear industry, health physics, and homeland security. Nevertheless, only a few scientific books are dedicated to uranium in general and analytical chemistry aspects in particular. Analytical Chemistry of Uranium: Environmental, Forensic, Nuclear, and Toxicological Applications covers the fascinating advances in the field of analytical chemistry of uranium. Exploring a broad range of topics, the book focuses on the analytical aspects of industrial processes that involve uranium, its presence in the environment, health and biological implications of exposure to uranium compounds, and nuclear forensics. Topics include: Examples of procedures used to characterize uranium in environmental samples of soil, sediments, vegetation, water, and air Analytical methods used to examine the rigorous specifications of uranium and its compounds deployed in the nuclear fuel cycle Health aspects of exposure to uranium and the bioassays used for exposure assessment Up-to-date analytical techniques used in nuclear forensics for safeguards in support of non-proliferation, including single particle characterization Each chapter includes an overview of the topic and several examples to demonstrate the analytical procedures. This is followed by sample preparation, separation and purification techniques where necessary. The book supplies readers with a solid understanding of the analytical chemistry approach used today for characterizing the different facets of uranium, providing a good starting point for further investigation into this important element.
Dedicated specifically to nuclear analytical techniques, this publication is intended to assist scientists using alpha, beta and gamma spectrometries, neutron activation and XRF analyses, and other nuclear analytical methods, in assessing and quantifying the sources of uncertainty in their daily measurements.
Prompt gamma activation analysis (PGAA) is a unique, non-destructive nuclear analytical method with multi-element capabilities. It is most effective if intense neutron beams (especially cold beams) of nuclear reactors are used to induce the prompt gamma radiation. Based largely on the authors' pioneering research in cold neutron PGAA, the handbook describes the methodology in self-contained manner and reviews recent applications. The library of prompt gamma ray data and spectra for all natural elements is a unique aid to the practitioner. The level is understandable by a broad audience, which facilitates teaching and training. The Handbook of Prompt Gamma Activation Analysis is a comprehensive handbook written for those practising the method, wanting to implement it at a reactor facility, or just looking for a powerful non-destructive method of element analysis. The book is also useful for nuclear physics, chemistry and engineering scientists, scholars and graduate students interested in neutron-induced gamma ray spectroscopy and nuclear analytical methods.
Despite the often difficult and time-consuming effort of performing experiments with fast (14 MeV) neutrons, these neutrons can offer special insight into nucleus and other materials because of the absence of charge. 14 MeV Neutrons: Physics and Applications explores fast neutrons in basic science and applications to problems in medicine, the envir
Nuclear analytical techniques have many advantages over other techniques, such as high sensitivity and precision. They couple powerful selective separation with sensitive element-specific detection. The uses of metalloproteomics studies are restricted to the fields of analytical and nuclear chemistry. They also have great potential to elucidate the origins of certain diseases and assist in their diagnosis and treatment via the development of new drugs. Nuclear Analytical Techniques for Metallomics and Metalloproteomics provides readers with a comprehensive view of this relatively new and exciting area of bioanalytical and inorganic chemistry. It contains contributions from experts in disciplines as diverse as analytical chemistry, nuclear chemistry, environmental science, molecular biology and medicinal chemistry. Various nuclear analytical techniques are covered including neutron activation analysis, X-ray fluorescence, isotope tracer, M÷ssbauer spectrometry, X-ray absorption spectrometry, and neutron scattering and diffraction. They provide useful information both for chemical speciation analysis and structural characterization of metalloproteins and metals in biological systems. Consequently, the book is not only relevant for chemists involved in nuclear techniques and speciation, but also environmental, nutritional and clinical researchers and drug developers. The book includes many illustrations, tables and documents to support the coverage of the latest developments. It also offers a well-organized bibliography to facilitate further reading.