Atmospheric Pressure Plasma for Surface Modification

Atmospheric Pressure Plasma for Surface Modification

Author: Rory A. Wolf

Publisher: John Wiley & Sons

Published: 2012-11-08

Total Pages: 268

ISBN-13: 1118547551

DOWNLOAD EBOOK

This Book's focus and intent is to impart an understanding of the practical application of atmospheric plasma for the advancement of a wide range of current and emerging technologies. The primary key feature of this book is the introduction of over thirteen years of practical experimental evidence of successful surface modifications by atmospheric plasma methods. It offers a handbook-based approach for leveraging and optimizing atmospheric plasma technologies which are currently in commercial use. It also offers a complete treatment of both basic plasma physics and industrial plasma processing with the intention of becoming a primary reference for students and professionals. The reader will learn the mechanisms which control and operate atmospheric plasma technologies and how these technologies can be leveraged to develop in-line continuous processing of a wide variety of substrates. Readers will gain an understanding of specific surface modification effects by atmospheric plasmas, and how to best characterize those modifications to optimize surface cleaning and functionalization for adhesion promotion. The book also features a series of chapters written to address practical surface modification effects of atmospheric plasmas within specific application markets, and a commercially-focused assessment of those effects.


Atmospheric Science

Atmospheric Science

Author: John M. Wallace

Publisher: Elsevier

Published: 2006-03-24

Total Pages: 507

ISBN-13: 0080499538

DOWNLOAD EBOOK

Atmospheric Science, Second Edition, is the long-awaited update of the classic atmospheric science text, which helped define the field nearly 30 years ago and has served as the cornerstone for most university curricula. Now students and professionals alike can use this updated classic to understand atmospheric phenomena in the context of the latest discoveries, and prepare themselves for more advanced study and real-life problem solving. This latest edition of Atmospheric Science, has been revamped in terms of content and appearance. It contains new chapters on atmospheric chemistry, the Earth system, the atmospheric boundary layer, and climate, as well as enhanced treatment of atmospheric dynamics, radiative transfer, severe storms, and global warming. The authors illustrate concepts with full-color, state-of-the-art imagery and cover a vast amount of new information in the field. Extensive numerical and qualitative exercises help students apply basic physical principles to atmospheric problems. There are also biographical footnotes summarizing the work of key scientists, along with a student companion website that hosts climate data; answers to quantitative exercises; full solutions to selected exercises; skew-T log p chart; related links, appendices; and more. The instructor website features: instructor's guide; solutions to quantitative exercises; electronic figures from the book; plus supplementary images for use in classroom presentations. Meteorology students at both advanced undergraduate and graduate levels will find this book extremely useful. - Full-color satellite imagery and cloud photographs illustrate principles throughout - Extensive numerical and qualitative exercises emphasize the application of basic physical principles to problems in the atmospheric sciences - Biographical footnotes summarize the lives and work of scientists mentioned in the text, and provide students with a sense of the long history of meteorology - Companion website encourages more advanced exploration of text topics: supplementary information, images, and bonus exercises


Nonequilibrium Atmospheric Pressure Plasma Jets

Nonequilibrium Atmospheric Pressure Plasma Jets

Author: XinPei Lu

Publisher: CRC Press

Published: 2019-04-23

Total Pages: 388

ISBN-13: 0429620721

DOWNLOAD EBOOK

Nonequilibrium atmospheric pressure plasma jets (N-APPJs) generate plasma in open space rather than in a confined chamber and can be utilized for applications in medicine. This book provides a complete introduction to this fast-emerging field, from the fundamental physics, to experimental approaches, to plasma and reactive species diagnostics. It provides an overview of the development of a wide range of plasma jet devices and their fundamental mechanisms. The book concludes with a discussion of the exciting application of plasmas for cancer treatment. The book provides details on experimental methods including expert tips and caveats. covers novel devices driven by various power sources and the impact of operating conditions on concentrations and fluxes of the reactive species. discusses the latest advances including theory, modeling, and simulation approaches. gives an introduction, overview and details on state of the art diagnostics of small scale high gradient atmospheric pressure plasmas. covers the use of N-APPJs for cancer applications, including discussion of destruction of cancer cells, mechanisms of action, and selectivity studies. XinPei Lu is a Chair Professor in the School of Electrical and Electronic Engineering at Huazhong University of Science and Technology. Stephan Reuter is currently Visiting Professor at Université Paris-Saclay. In a recent Alexander von Humboldt research fellowship at Princeton University, he performed ultrafast laser spectroscopy on cold plasmas. Mounir Laroussi is Professor of Electrical and Computer Engineering and director of the Plasma Engineering and Medicine Institute at Old Dominion University. He is a Fellow of IEEE and recipient of an IEEE Merit Award. DaWei Liu is Professor in the School of Electrical and Electronic Engineering at Huazhong University of Science and Technology.


Non-Equilibrium Air Plasmas at Atmospheric Pressure

Non-Equilibrium Air Plasmas at Atmospheric Pressure

Author: K.H. Becker

Publisher: CRC Press

Published: 2004-11-29

Total Pages: 704

ISBN-13: 9780750309622

DOWNLOAD EBOOK

Atmospheric-pressure plasmas continue to attract considerable research interest due to their diverse applications, including high power lasers, opening switches, novel plasma processing applications and sputtering, EM absorbers and reflectors, remediation of gaseous pollutants, excimer lamps, and other noncoherent light sources. Atmospheric-pressure plasmas in air are of particular importance as they can be generated and maintained without vacuum enclosure and without any additional feed gases. Non-Equilibrium Air Plasmas at Atmospheric Pressure reviews recent advances and applications in the generation and maintenance of atmospheric-pressure plasmas. With contributions from leading international researchers, the coverage includes advances in atmospheric-pressure plasma source development, diagnostics and characterization, air plasma chemistry, modeling and computational techniques, and an assessment of the status and prospects of atmospheric-pressure air plasma applications. The extensive application sections make this book attractive for practitioners in many fields where technologies based on atmospheric-pressure air plasmas are emerging.


The World of Physics 2nd Edition

The World of Physics 2nd Edition

Author: John Avison

Publisher: Nelson Thornes

Published: 2014-11

Total Pages: 520

ISBN-13: 9780174387336

DOWNLOAD EBOOK

A clear and easy to follow textbook including material on forces, machines, motion, properties of matter, electronics and energy, problem-solving investigations and practice in experimental design.


Atmospheric Pressure Plasma Treatment of Polymers

Atmospheric Pressure Plasma Treatment of Polymers

Author: Michael Thomas

Publisher: John Wiley & Sons

Published: 2013-05-28

Total Pages: 0

ISBN-13: 1118596218

DOWNLOAD EBOOK

An indispensable volume detailing the current and potential applications of atmospheric pressure plasma treatment by experts practicing in fields around the world Polymers are used in a wide variety of industries to fabricate legions of products because of their many desirable traits. However, polymers in general (and polyolefins, in particular) are innately not very adhesionable because of the absence of polar or reactive groups on their surfaces and concomitant low surface energy. Surface treatment of polymers, however, is essential to impart reactive chemical groups on their surfaces to enhance their adhesion characteristic. Proper surface treatment can endow polymers with improved adhesion without affecting the bulk properties. A plethora of techniques (ranging from wet to dry, simple to sophisticated, vacuum to non-vacuum) for polymer surface modification have been documented in the literature but the Atmospheric Pressure Plasma (APP) treatment has attracted much attention because it offers many advantages vis-a-vis other techniques, namely uniform treatment, continuous operation, no need for vacuum, simplicity, low cost, no environmental or disposal concern, and applicability to large area samples. Although the emphasis in this book is on the utility of APP treatment for enhancement of polymer adhesion, APP is also applicable and effective to modulate many other surface properties of polymers: superhydrophilicity, superhydrophobicity, anti-fouling, anti-fogging, anti-icing, cell adhesion, biocompatibility, tribological behavior, etc. The key features of Atmospheric Pressure Plasma Treatment of Polymers: Address design and functions of various types of reactors Bring out current and potential applications of APP treatment Represent the cumulative wisdom of many key academic and industry researchers actively engaged in this key and enabling technology


Wind and Air Pressure

Wind and Air Pressure

Author: Alan Rodgers

Publisher: Heinemann-Raintree Library

Published: 2007

Total Pages: 40

ISBN-13: 9781432900755

DOWNLOAD EBOOK

Where does the wind come from? What is an anemometer? Who invented the Beaufort scale? Find out in 'Wind and Air Pressure', a fascinating introduction to our breezy and stormy weather!


Atmospheric Pressure Plasma Treatment of Polymers

Atmospheric Pressure Plasma Treatment of Polymers

Author: Michael Thomas

Publisher: John Wiley & Sons

Published: 2013-06-19

Total Pages: 435

ISBN-13: 1118747518

DOWNLOAD EBOOK

An indispensable volume detailing the current and potential applications of atmospheric pressure plasma treatment by experts practicing in fields around the world Polymers are used in a wide variety of industries to fabricate legions of products because of their many desirable traits. However, polymers in general (and polyolefins, in particular) are innately not very adhesionable because of the absence of polar or reactive groups on their surfaces and concomitant low surface energy. Surface treatment of polymers, however, is essential to impart reactive chemical groups on their surfaces to enhance their adhesion characteristic. Proper surface treatment can endow polymers with improved adhesion without affecting the bulk properties. A plethora of techniques (ranging from wet to dry, simple to sophisticated, vacuum to non-vacuum) for polymer surface modification have been documented in the literature but the Atmospheric Pressure Plasma (APP) treatment has attracted much attention because it offers many advantages vis-a-vis other techniques, namely uniform treatment, continuous operation, no need for vacuum, simplicity, low cost, no environmental or disposal concern, and applicability to large area samples. Although the emphasis in this book is on the utility of APP treatment for enhancement of polymer adhesion, APP is also applicable and effective to modulate many other surface properties of polymers: superhydrophilicity, superhydrophobicity, anti-fouling, anti-fogging, anti-icing, cell adhesion, biocompatibility, tribological behavior, etc. The key features of Atmospheric Pressure Plasma Treatment of Polymers: Address design and functions of various types of reactors Bring out current and potential applications of APP treatment Represent the cumulative wisdom of many key academic and industry researchers actively engaged in this key and enabling technology