The Atmosphere and Climate of Mars

The Atmosphere and Climate of Mars

Author: Robert M. Haberle

Publisher: Cambridge University Press

Published: 2017-06-29

Total Pages: 613

ISBN-13: 1107016185

DOWNLOAD EBOOK

This volume reviews all aspects of Mars atmospheric science from the surface to space, and from now and into the past.


The Development of Atmospheric General Circulation Models

The Development of Atmospheric General Circulation Models

Author: Leo Donner

Publisher: Cambridge University Press

Published: 2011

Total Pages: 289

ISBN-13: 0521190061

DOWNLOAD EBOOK

Presents unique perspectives from leading researchers on the development and application of atmospheric general circulation models. It is a core reference for academic researchers and professionals involved in atmospheric physics, meteorology and climate science, and a resource for graduate-level courses in climate modeling and numerical weather prediction.


Atmospheric and Oceanic Fluid Dynamics

Atmospheric and Oceanic Fluid Dynamics

Author: Geoffrey K. Vallis

Publisher: Cambridge University Press

Published: 2006-11-06

Total Pages: 772

ISBN-13: 1139459961

DOWNLOAD EBOOK

Fluid dynamics is fundamental to our understanding of the atmosphere and oceans. Although many of the same principles of fluid dynamics apply to both the atmosphere and oceans, textbooks tend to concentrate on the atmosphere, the ocean, or the theory of geophysical fluid dynamics (GFD). This textbook provides a comprehensive unified treatment of atmospheric and oceanic fluid dynamics. The book introduces the fundamentals of geophysical fluid dynamics, including rotation and stratification, vorticity and potential vorticity, and scaling and approximations. It discusses baroclinic and barotropic instabilities, wave-mean flow interactions and turbulence, and the general circulation of the atmosphere and ocean. Student problems and exercises are included at the end of each chapter. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation will be an invaluable graduate textbook on advanced courses in GFD, meteorology, atmospheric science and oceanography, and an excellent review volume for researchers. Additional resources are available at www.cambridge.org/9780521849692.


General Circulation Model Development

General Circulation Model Development

Author: David A. Randall

Publisher: Elsevier

Published: 2000-07-19

Total Pages: 849

ISBN-13: 0080507239

DOWNLOAD EBOOK

General Circulation Models (GCMs) are rapidly assuming widespread use as powerful tools for predicting global events on time scales of months to decades, such as the onset of EL Nino, monsoons, soil moisture saturation indices, global warming estimates, and even snowfall predictions. While GCMs have been praised for helping to foretell the current El Nino and its impact on droughts in Indonesia, its full power is only now being recognized by international scientists and governments who seek to link GCMs to help them estimate fish harvests, risk of floods, landslides, and even forest fires.Scientists in oceanography, hydrology, meteorology, and climatology and civil, ocean, and geological engineers perceive a need for a reference on GCM design. In this compilation of information by an internationally recognized group of experts, Professor Randall brings together the knowledge base of the forerunners in theoretical and applied frontiers of GCM development. General Circulation Model Development focuses on the past, present, and future design of numerical methods for general circulation modeling, as well as the physical parameterizations required for their proper implementation. Additional chapters on climate simulation and other applications provide illustrative examples of state-of-the-art GCM design.Key Features* Foreword by Norman Phillips* Authoritative overviews of current issues and ideas on global circulation modeling by leading experts* Retrospective and forward-looking chapters by Akio Arakawa of UCLA* Historical perspectives on the early years of general circulation modeling* Indispensable reference for researchers and graduate students