This book provides a comprehensive treatment of the chemical nature of the Earth’s early surface environment and how that led to the origin of life. This includes a detailed discussion of the likely process by which life emerged using as much quantitative information as possible. The emergence of life and the prior surface conditions of the Earth have implications for the evolution of Earth’s surface environment over the following 2-2.5 billion years. The last part of the book discusses how these changes took place and the evidence from the geologic record that supports this particular version of early and evolving conditions.
A collection of essays and articles provides a study of how the planet works, discussing Earth's structure, geographical features, geologic history, and evolution.
Gaia, in which James Lovelock puts forward his inspirational and controversial idea that the Earth functions as a single organism, with life influencing planetary processes to form a self-regulating system aiding its own survival, is now a classic work that continues to provoke heated scientific debate.
Investigates the evolution of the Earth's atmosphere from its initial condition devoid of oxygen and rich in carbon dioxide, to its present breathable state, with plenty of oxygen. Discusses whether the change was continuous and regular, or intermittent and variable, as well as the extent to which atmospheric and biological evolution are linked.Pack includes book and bookmark.
The Earth that sustains us today was born out of a few remarkable, near-catastrophic revolutions, started by biological innovations and marked by global environmental consequences. The revolutions have certain features in common, such as an increase in complexity, energy utilization, and information processing by life. This book describes these revolutions, showing the fundamental interdependence of the evolution of life and its non-living environment. We would not exist unless these upheavals had led eventually to 'successful' outcomes - meaning that after each one, at length, a new stable world emerged. The current planet-reshaping activities of our species may be the start of another great Earth system revolution, but there is no guarantee that this one will be successful. The book explains what a successful transition through it might look like, if we are wise enough to steer such a course. This book places humanity in context as part of the Earth system, using a new scientific synthesis to illustrate our debt to the deep past and our potential for the future.
Hailed by The New York Times for writing “with wonderful clarity about science . . . that effortlessly teaches as it zips along,” nationally bestselling author Robert M. Hazen offers a radical new approach to Earth history in this intertwined tale of the planet’s living and nonliving spheres. With an astrobiologist’s imagination, a historian’s perspective, and a naturalist’s eye, Hazen calls upon twenty-first-century discoveries that have revolutionized geology and enabled scientists to envision Earth’s many iterations in vivid detail—from the mile-high lava tides of its infancy to the early organisms responsible for more than two-thirds of the mineral varieties beneath our feet. Lucid, controversial, and on the cutting edge of its field, The Story of Earth is popular science of the highest order. "A sweeping rip-roaring yarn of immense scope, from the birth of the elements in the stars to meditations on the future habitability of our world." -Science "A fascinating story." -Bill McKibben
When humanity first glimpsed planet Earth from space, the unity of the system that supports humankind entered the popular consciousness. The concept of the Earth's atmosphere, biosphere, oceans, soil, and rocks operating as a closely interacting system has rapidly gained ground in science. This new field, involving geographers, geologists, biologists, oceanographers, and atmospheric physicists, is known as Earth System Science. In this Very Short Introduction, Tim Lenton considers how a world in which humans could evolve was created; how, as a species, we are now reshaping that world; and what a sustainable future for humanity within the Earth System might look like. Drawing on elements of geology, biology, chemistry, physics, and mathematics, Lenton asks whether Earth System Science can help guide us onto a sustainable course before we alter the Earth system to the point where we destroy ourselves and our current civilisation. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.
The field of planetary biology and chemical evolution draws together experts in astronomy, paleobiology, biochemistry, and space science who work together to understand the evolution of living systems. This field has made exciting discoveries that shed light on how organic compounds came together to form self-replicating molecules-the origin of life. This volume updates that progress and offers recommendations on research programs-including an ambitious effort centered on Mars-to advance the field over the next 10 to 15 years. The book presents a wide range of data and research results on these and other issues: The biogenic elements and their interaction in the interstellar clouds and in solar nebulae. Early planetary environments and the conditions that lead to the origin of life. The evolution of cellular and multicellular life. The search for life outside the solar system. This volume will become required reading for anyone involved in the search for life's beginnings-including exobiologists, geoscientists, planetary scientists, and U.S. space and science policymakers.