Asymptotic Methods in Statistical Decision Theory

Asymptotic Methods in Statistical Decision Theory

Author: Lucien Le Cam

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 767

ISBN-13: 1461249465

DOWNLOAD EBOOK

This book grew out of lectures delivered at the University of California, Berkeley, over many years. The subject is a part of asymptotics in statistics, organized around a few central ideas. The presentation proceeds from the general to the particular since this seemed the best way to emphasize the basic concepts. The reader is expected to have been exposed to statistical thinking and methodology, as expounded for instance in the book by H. Cramer [1946] or the more recent text by P. Bickel and K. Doksum [1977]. Another pos sibility, closer to the present in spirit, is Ferguson [1967]. Otherwise the reader is expected to possess some mathematical maturity, but not really a great deal of detailed mathematical knowledge. Very few mathematical objects are used; their assumed properties are simple; the results are almost always immediate consequences of the definitions. Some objects, such as vector lattices, may not have been included in the standard background of a student of statistics. For these we have provided a summary of relevant facts in the Appendix. The basic structures in the whole affair are systems that Blackwell called "experiments" and "transitions" between them. An "experiment" is a mathe matical abstraction intended to describe the basic features of an observational process if that process is contemplated in advance of its implementation. Typically, an experiment consists of a set E> of theories about what may happen in the observational process.


Asymptotics in Statistics

Asymptotics in Statistics

Author: Lucien Le Cam

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 299

ISBN-13: 1461211662

DOWNLOAD EBOOK

This is the second edition of a coherent introduction to the subject of asymptotic statistics as it has developed over the past 50 years. It differs from the first edition in that it is now more 'reader friendly' and also includes a new chapter on Gaussian and Poisson experiments, reflecting their growing role in the field. Most of the subsequent chapters have been entirely rewritten and the nonparametrics of Chapter 7 have been amplified. The volume is not intended to replace monographs on specialized subjects, but will help to place them in a coherent perspective. It thus represents a link between traditional material - such as maximum likelihood, and Wald's Theory of Statistical Decision Functions -- together with comparison and distances for experiments. Much of the material has been taught in a second year graduate course at Berkeley for 30 years.


Statistical Decision Theory

Statistical Decision Theory

Author: F. Liese

Publisher: Springer Science & Business Media

Published: 2008-12-30

Total Pages: 696

ISBN-13: 0387731946

DOWNLOAD EBOOK

For advanced graduate students, this book is a one-stop shop that presents the main ideas of decision theory in an organized, balanced, and mathematically rigorous manner, while observing statistical relevance. All of the major topics are introduced at an elementary level, then developed incrementally to higher levels. The book is self-contained as it provides full proofs, worked-out examples, and problems. The authors present a rigorous account of the concepts and a broad treatment of the major results of classical finite sample size decision theory and modern asymptotic decision theory. With its broad coverage of decision theory, this book fills the gap between standard graduate texts in mathematical statistics and advanced monographs on modern asymptotic theory.


Theory and Methods of Statistics

Theory and Methods of Statistics

Author: P.K. Bhattacharya

Publisher: Academic Press

Published: 2016-06-23

Total Pages: 546

ISBN-13: 0128041234

DOWNLOAD EBOOK

Theory and Methods of Statistics covers essential topics for advanced graduate students and professional research statisticians. This comprehensive resource covers many important areas in one manageable volume, including core subjects such as probability theory, mathematical statistics, and linear models, and various special topics, including nonparametrics, curve estimation, multivariate analysis, time series, and resampling. The book presents subjects such as "maximum likelihood and sufficiency," and is written with an intuitive, heuristic approach to build reader comprehension. It also includes many probability inequalities that are not only useful in the context of this text, but also as a resource for investigating convergence of statistical procedures. - Codifies foundational information in many core areas of statistics into a comprehensive and definitive resource - Serves as an excellent text for select master's and PhD programs, as well as a professional reference - Integrates numerous examples to illustrate advanced concepts - Includes many probability inequalities useful for investigating convergence of statistical procedures


Statistical Experiments and Decisions

Statistical Experiments and Decisions

Author: Al?bert Nikolaevich Shiri?aev

Publisher: World Scientific

Published: 2000

Total Pages: 306

ISBN-13: 9789810241018

DOWNLOAD EBOOK

This volume provides an exposition of some fundamental aspects of the asymptotic theory of statistical experiments. The most important of them is ?how to construct asymptotically optimal decisions if we know the structure of optimal decisions for the limit experiment?.


Statistical Decision Theory

Statistical Decision Theory

Author: James Berger

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 440

ISBN-13: 147571727X

DOWNLOAD EBOOK

Decision theory is generally taught in one of two very different ways. When of opti taught by theoretical statisticians, it tends to be presented as a set of mathematical techniques mality principles, together with a collection of various statistical procedures. When useful in establishing the optimality taught by applied decision theorists, it is usually a course in Bayesian analysis, showing how this one decision principle can be applied in various practical situations. The original goal I had in writing this book was to find some middle ground. I wanted a book which discussed the more theoretical ideas and techniques of decision theory, but in a manner that was constantly oriented towards solving statistical problems. In particular, it seemed crucial to include a discussion of when and why the various decision prin ciples should be used, and indeed why decision theory is needed at all. This original goal seemed indicated by my philosophical position at the time, which can best be described as basically neutral. I felt that no one approach to decision theory (or statistics) was clearly superior to the others, and so planned a rather low key and impartial presentation of the competing ideas. In the course of writing the book, however, I turned into a rabid Bayesian. There was no single cause for this conversion; just a gradual realization that things seemed to ultimately make sense only when looked at from the Bayesian viewpoint.


Comparison of Statistical Experiments

Comparison of Statistical Experiments

Author: Erik Torgersen

Publisher: Cambridge University Press

Published: 1991-03-14

Total Pages: 706

ISBN-13: 9780521250306

DOWNLOAD EBOOK

There are a number of important questions associated with statistical experiments: when does one given experiment yield more information than another; how can we measure the difference in information; how fast does information accumulate by repeating the experiment? The means of answering such questions has emerged from the work of Wald, Blackwell, LeCam and others and is based on the ideas of risk and deficiency. The present work which is devoted to the various methods of comparing statistical experiments, is essentially self-contained, requiring only some background in measure theory and functional analysis. Chapters introducing statistical experiments and the necessary convex analysis begin the book and are followed by others on game theory, decision theory and vector lattices. The notion of deficiency, which measures the difference in information between two experiments, is then introduced. The relation between it and other concepts, such as sufficiency, randomisation, distance, ordering, equivalence, completeness and convergence are explored. This is a comprehensive treatment of the subject and will be an essential reference for mathematical statisticians.


Smoothing Methods in Statistics

Smoothing Methods in Statistics

Author: Jeffrey S. Simonoff

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 349

ISBN-13: 1461240263

DOWNLOAD EBOOK

Focussing on applications, this book covers a very broad range, including simple and complex univariate and multivariate density estimation, nonparametric regression estimation, categorical data smoothing, and applications of smoothing to other areas of statistics. It will thus be of particular interest to data analysts, as arguments generally proceed from actual data rather than statistical theory, while the "Background Material" sections will interest statisticians studying the field. Over 750 references allow researchers to find the original sources for more details, and the "Computational Issues" sections provide sources for statistical software that use the methods discussed. Each chapter includes exercises with a heavily computational focus based upon the data sets used in the book, making it equally suitable as a textbook for a course in smoothing.


Optimization: Techniques And Applications (Icota '95)

Optimization: Techniques And Applications (Icota '95)

Author: G Z Liu

Publisher: World Scientific

Published: 1995-09-01

Total Pages: 1718

ISBN-13: 9814549150

DOWNLOAD EBOOK

With the advent of powerful computers and novel mathematical programming techniques, the multidisciplinary field of optimization has advanced to the stage that quite complicated systems can be addressed. The conference was organized to provide a platform for the exchange of new ideas and information and for identifying needs for future research. The contributions covered both theoretical techniques and a rich variety of case studies to which optimization can be usefully applied.