Asymptotic Methods for Wave and Quantum Problems

Asymptotic Methods for Wave and Quantum Problems

Author: M. V. Karasev

Publisher: American Mathematical Soc.

Published: 2003

Total Pages: 298

ISBN-13: 9780821833360

DOWNLOAD EBOOK

The collection consists of four papers in different areas of mathematical physics united by the intrinsic coherence of the asymptotic methods used. The papers describe both the known results and most recent achievements, as well as new concepts and ideas in mathematical analysis of quantum and wave problems. In the introductory paper ``Quantization and Intrinsic Dynamics'' a relationship between quantization of symplectic manifolds and nonlinear wave equations is described and discussed from the viewpoint of the weak asymptotics method (asymptotics in distributions) and the semiclassical approximation method. It also explains a hidden dynamic geometry that arises when using these methods. Three other papers discuss applications of asymptotic methods to the construction of wave-type solutions of nonlinear PDE's, to the theory of semiclassical approximation (in particular, the Whitham method) for nonlinear second-order ordinary differential equations, and to the study of the Schrodinger type equations whose potential wells are sufficiently shallow that the discrete spectrum contains precisely one point. All the papers contain detailed references and are oriented not only to specialists in asymptotic methods, but also to a wider audience of researchers and graduate students working in partial differential equations and mathematical physics.


Asymptotic Methods in Quantum Mechanics

Asymptotic Methods in Quantum Mechanics

Author: S.H. Patil

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 178

ISBN-13: 3642573177

DOWNLOAD EBOOK

Quantum mechanics and the Schrodinger equation are the basis for the de scription of the properties of atoms, molecules, and nuclei. The development of reliable, meaningful solutions for the energy eigenfunctions of these many is a formidable problem. The usual approach for obtaining particle systems the eigenfunctions is based on their variational extremum property of the expectation values of the energy. However the complexity of these variational solutions does not allow a transparent, compact description of the physical structure. There are some properties of the wave functions in some specific, spatial domains, which depend on the general structure of the Schrodinger equation and the electromagnetic potential. These properties provide very useful guidelines in developing simple and accurate solutions for the wave functions of these systems, and provide significant insight into their physical structure. This point, though of considerable importance, has not received adequate attention. Here we present a description of the local properties of the wave functions of a collection of particles, in particular the asymptotic properties when one of the particles is far away from the others. The asymptotic behaviour of this wave function depends primarily on the separation energy of the outmost particle. The universal significance of the asymptotic behaviour of the wave functions should be appreciated at both research and pedagogic levels. This is the main aim of our presentation here.


Short-Wavelength Diffraction Theory

Short-Wavelength Diffraction Theory

Author: Vasili M. Babic

Publisher: Springer

Published: 2011-12-08

Total Pages: 0

ISBN-13: 9783642834615

DOWNLOAD EBOOK

In the study of short-wave diffraction problems, asymptotic methods - the ray method, the parabolic equation method, and its further development as the "etalon" (model) problem method - play an important role. These are the meth ods to be treated in this book. The applications of asymptotic methods in the theory of wave phenomena are still far from being exhausted, and we hope that the techniques set forth here will help in solving a number of problems of interest in acoustics, geophysics, the physics of electromagnetic waves, and perhaps in quantum mechanics. In addition, the book may be of use to the mathematician interested in contemporary problems of mathematical physics. Each chapter has been annotated. These notes give a brief history of the problem and cite references dealing with the content of that particular chapter. The main text mentions only those pUblications that explain a given argument or a specific calculation. In an effort to save work for the reader who is interested in only some of the problems considered in this book, we have included a flow chart indicating the interdependence of chapters and sections.


Applied Asymptotic Analysis

Applied Asymptotic Analysis

Author: Peter David Miller

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 488

ISBN-13: 0821840789

DOWNLOAD EBOOK

This book is a survey of asymptotic methods set in the current applied research context of wave propagation. It stresses rigorous analysis in addition to formal manipulations. Asymptotic expansions developed in the text are justified rigorously, and students are shown how to obtain solid error estimates for asymptotic formulae. The book relates examples and exercises to subjects of current research interest, such as the problem of locating the zeros of Taylor polynomials of entirenonvanishing functions and the problem of counting integer lattice points in subsets of the plane with various geometrical properties of the boundary. The book is intended for a beginning graduate course on asymptotic analysis in applied mathematics and is aimed at students of pure and appliedmathematics as well as science and engineering. The basic prerequisite is a background in differential equations, linear algebra, advanced calculus, and complex variables at the level of introductory undergraduate courses on these subjects. The book is ideally suited to the needs of a graduate student who, on the one hand, wants to learn basic applied mathematics, and on the other, wants to understand what is needed to make the various arguments rigorous. Down here in the Village, this is knownas the Courant point of view!! --Percy Deift, Courant Institute, New York Peter D. Miller is an associate professor of mathematics at the University of Michigan at Ann Arbor. He earned a Ph.D. in Applied Mathematics from the University of Arizona and has held positions at the Australian NationalUniversity (Canberra) and Monash University (Melbourne). His current research interests lie in singular limits for integrable systems.


Asymptotic Methods for Integrals

Asymptotic Methods for Integrals

Author: Nico M. Temme

Publisher: World Scientific Publishing Company

Published: 2015

Total Pages: 0

ISBN-13: 9789814612159

DOWNLOAD EBOOK

This book gives introductory chapters on the classical basic and standard methods for asymptotic analysis, such as Watson's lemma, Laplace's method, the saddle point and steepest descent methods, stationary phase and Darboux's method. The methods, explained in great detail, will obtain asymptotic approximations of the well-known special functions of mathematical physics and probability theory. After these introductory chapters, the methods of uniform asymptotic analysis are described in which several parameters have influence on typical phenomena: turning points and transition points, coinciding saddle and singularities. In all these examples, the special functions are indicated that describe the peculiar behavior of the integrals. The text extensively covers the classical methods with an emphasis on how to obtain expansions, and how to use the results for numerical methods, in particular for approximating special functions. In this way, we work with a computational mind: how can we use certain expansions in numerical analysis and in computer programs, how can we compute coefficients, and so on.


From Geometry to Quantum Mechanics

From Geometry to Quantum Mechanics

Author: Yoshiaki Maeda

Publisher: Springer Science & Business Media

Published: 2007-04-22

Total Pages: 326

ISBN-13: 0817645306

DOWNLOAD EBOOK

* Invited articles in differential geometry and mathematical physics in honor of Hideki Omori * Focus on recent trends and future directions in symplectic and Poisson geometry, global analysis, Lie group theory, quantizations and noncommutative geometry, as well as applications of PDEs and variational methods to geometry * Will appeal to graduate students in mathematics and quantum mechanics; also a reference


Asymptotic Methods for the Fokker-Planck Equation and the Exit Problem in Applications

Asymptotic Methods for the Fokker-Planck Equation and the Exit Problem in Applications

Author: Johan Grasman

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 224

ISBN-13: 3662038579

DOWNLOAD EBOOK

Asymptotic methods are of great importance for practical applications, especially in dealing with boundary value problems for small stochastic perturbations. This book deals with nonlinear dynamical systems perturbed by noise. It addresses problems in which noise leads to qualitative changes, escape from the attraction domain, or extinction in population dynamics. The most likely exit point and expected escape time are determined with singular perturbation methods for the corresponding Fokker-Planck equation. The authors indicate how their techniques relate to the ItĂ´ calculus applied to the Langevin equation. The book will be useful to researchers and graduate students.


Topology, Geometry, Integrable Systems, and Mathematical Physics

Topology, Geometry, Integrable Systems, and Mathematical Physics

Author: V. M. Buchstaber

Publisher: American Mathematical Soc.

Published: 2014-11-18

Total Pages: 408

ISBN-13: 1470418711

DOWNLOAD EBOOK

Articles in this collection are devoted to modern problems of topology, geometry, mathematical physics, and integrable systems, and they are based on talks given at the famous Novikov's seminar at the Steklov Institute of Mathematics in Moscow in 2012-2014. The articles cover many aspects of seemingly unrelated areas of modern mathematics and mathematical physics; they reflect the main scientific interests of the organizer of the seminar, Sergey Petrovich Novikov. The volume is suitable for graduate students and researchers interested in the corresponding areas of mathematics and physics.


Generalized Functions and Fourier Analysis

Generalized Functions and Fourier Analysis

Author: Michael Oberguggenberger

Publisher: Birkhäuser

Published: 2017-05-06

Total Pages: 280

ISBN-13: 3319519115

DOWNLOAD EBOOK

This book gives an excellent and up-to-date overview on the convergence and joint progress in the fields of Generalized Functions and Fourier Analysis, notably in the core disciplines of pseudodifferential operators, microlocal analysis and time-frequency analysis. The volume is a collection of chapters addressing these fields, their interaction, their unifying concepts and their applications and is based on scientific activities related to the International Association for Generalized Functions (IAGF) and the ISAAC interest groups on Pseudo-Differential Operators (IGPDO) and on Generalized Functions (IGGF), notably on the longstanding collaboration of these groups within ISAAC.