Designed for teaching astrophysics to physics students at advanced undergraduate or beginning graduate level, this textbook also provides an overview of astrophysics for astrophysics graduate students, before they delve into more specialized volumes. Assuming background knowledge at the level of a physics major, the textbook develops astrophysics from the basics without requiring any previous study in astronomy or astrophysics. Physical concepts, mathematical derivations and observational data are combined in a balanced way to provide a unified treatment. Topics such as general relativity and plasma physics, which are not usually covered in physics courses but used extensively in astrophysics, are developed from first principles. While the emphasis is on developing the fundamentals thoroughly, recent important discoveries are highlighted at every stage.
"This textbook develops astrophysics from the basics without requiring any previous study in astronomy or astrophysics. Physical concepts,mathematical derivations and observational data are combined in a balanced way to provide a unified treatment"--Provided by publisher.
Essential Astrophysics is a book to learn or teach from, as well as a fundamental reference volume for anyone interested in astronomy and astrophysics. It presents astrophysics from basic principles without requiring any previous study of astronomy or astrophysics. It serves as a comprehensive introductory text, which takes the student through the field of astrophysics in lecture-sized chapters of basic physical principles applied to the cosmos. This one-semester overview will be enjoyed by undergraduate students with an interest in the physical sciences, such as astronomy, chemistry, engineering or physics, as well as by any curious student interested in learning about our celestial science. The mathematics required for understanding the text is on the level of simple algebra, for that is all that is needed to describe the fundamental principles. The text is of sufficient breadth and depth to prepare the interested student for more advanced specialised courses in the future. Astronomical examples are provided throughout the text, to reinforce the basic concepts and physics, and to demonstrate the use of the relevant formulae. In this way, the student learns to apply the fundamental equations and principles to cosmic objects and situations. Astronomical and physical constants and units as well as the most fundamental equations can be found in the appendix. Essential Astrophysics goes beyond the typical textbook by including references to the seminal papers in the field, with further reference to recent applications, results, or specialised literature.
Intended for undergraduate non-science majors, satisfying a general education requirement or seeking an elective in natural science, this is a physics text, but with the emphasis on topics and applications in astronomy. The perspective is thus different from most undergraduate astronomy courses: rather than discussing what is known about the heavens, this text develops the principles of physics so as to illuminate what we see in the heavens. The fundamental principles governing the behaviour of matter and energy are thus used to study the solar system, the structure and evolution of stars, and the early universe. The first part of the book develops Newtonian mechanics towards an understanding of celestial mechanics, while chapters on electromagnetism and elementary quantum theory lay the foundation of the modern theory of the structure of matter and the role of radiation in the constitution of stars. Kinetic theory and nuclear physics provide the basis for a discussion of stellar structure and evolution, and an examination of red shifts and other observational data provide a basis for discussions of cosmology and cosmogony.
A concrete, mid-level treatment, this readable and authoritative translation from the French provides an excellent guide to observational astrophysics. Methods of research and observation receive as much attention as results. Topics include stellar photometry and spectroscopy, classification and properties of normal stars, construction of Hertzsprung- Russell diagrams, Yerkes two-dimensional classification, and much more. Reprint of Introduction à l’astrophysique: les étoiles, Max Leclerc et Cie, 1961.
The ideal one-semester astrophysics introduction for science undergraduates—now expanded and fully updated Winner of the American Astronomical Society's Chambliss Award, Astrophysics in a Nutshell has become the text of choice in astrophysics courses for science majors at top universities in North America and beyond. In this expanded and fully updated second edition, the book gets even better, with a new chapter on extrasolar planets; a greatly expanded chapter on the interstellar medium; fully updated facts and figures on all subjects, from the observed properties of white dwarfs to the latest results from precision cosmology; and additional instructive problem sets. Throughout, the text features the same focused, concise style and emphasis on physics intuition that have made the book a favorite of students and teachers. Written by Dan Maoz, a leading active researcher, and designed for advanced undergraduate science majors, Astrophysics in a Nutshell is a brief but thorough introduction to the observational data and theoretical concepts underlying modern astronomy. Generously illustrated, it covers the essentials of modern astrophysics, emphasizing the common physical principles that govern astronomical phenomena, and the interplay between theory and observation, while also introducing subjects at the forefront of modern research, including black holes, dark matter, dark energy, and gravitational lensing. In addition to serving as a course textbook, Astrophysics in a Nutshell is an ideal review for a qualifying exam and a handy reference for teachers and researchers. The most concise and current astrophysics textbook for science majors—now expanded and fully updated with the latest research results Contains a broad and well-balanced selection of traditional and current topics Uses simple, short, and clear derivations of physical results Trains students in the essential skills of order-of-magnitude analysis Features a new chapter on extrasolar planets, including discovery techniques Includes new and expanded sections and problems on the physics of shocks, supernova remnants, cosmic-ray acceleration, white dwarf properties, baryon acoustic oscillations, and more Contains instructive problem sets at the end of each chapter Solutions manual (available only to professors)
Designed to teach plasma physics and astrophysics 'from the ground up', this textbook proceeds from the simplest examples through a careful derivation of results and encourages the reader to think for themselves.
Written by an award-winning cosmologist, this brand new textbook provides advanced undergraduate and graduate students with coverage of the very latest developments in the observational science of cosmology. The book is separated into three parts; part I covers particle physics and general relativity, part II explores an account of the known history of the universe, and part III studies inflation. Full treatment of the origin of structure, scalar fields, the cosmic microwave background and the early universe are provided. Problems are included in the book with solutions provided in a separate solutions manual. More advanced extension material is offered in the Appendix, ensuring the book is fully accessible to students with a wide variety of background experience.
A good working knowledge of fluid mechanics and plasma physics is essential for the modern astrophysicist. This graduate textbook provides a clear, pedagogical introduction to these core subjects. Assuming an undergraduate background in physics, this book develops fluid mechanics and plasma physics from first principles. This book is unique because it presents neutral fluids and plasmas in a unified scheme, clearly indicating both their similarities and their differences. Also, both the macroscopic (continuum) and microscopic (particle) theories are developed, establishing the connections between them. Throughout, key examples from astrophysics are used, though no previous knowledge of astronomy is assumed. Exercises are included at the end of chapters to test the reader's understanding. This textbook is aimed primarily at astrophysics graduate students. It will also be of interest to advanced students in physics and applied mathematics seeking a unified view of fluid mechanics and plasma physics, encompassing both the microscopic and macroscopic theories.
The close relation between particle interactions and large scale development of the cosmos is a constant theme in the text, with emphasis on the interplay between experiment and theory."--Jacket.