Association Rule Hiding for Data Mining

Association Rule Hiding for Data Mining

Author: Aris Gkoulalas-Divanis

Publisher: Springer Science & Business Media

Published: 2010-05-17

Total Pages: 159

ISBN-13: 1441965696

DOWNLOAD EBOOK

Privacy and security risks arising from the application of different data mining techniques to large institutional data repositories have been solely investigated by a new research domain, the so-called privacy preserving data mining. Association rule hiding is a new technique in data mining, which studies the problem of hiding sensitive association rules from within the data. Association Rule Hiding for Data Mining addresses the problem of "hiding" sensitive association rules, and introduces a number of heuristic solutions. Exact solutions of increased time complexity that have been proposed recently are presented, as well as a number of computationally efficient (parallel) approaches that alleviate time complexity problems, along with a thorough discussion regarding closely related problems (inverse frequent item set mining, data reconstruction approaches, etc.). Unsolved problems, future directions and specific examples are provided throughout this book to help the reader study, assimilate and appreciate the important aspects of this challenging problem. Association Rule Hiding for Data Mining is designed for researchers, professors and advanced-level students in computer science studying privacy preserving data mining, association rule mining, and data mining. This book is also suitable for practitioners working in this industry.


Research Anthology on Privatizing and Securing Data

Research Anthology on Privatizing and Securing Data

Author: Management Association, Information Resources

Publisher: IGI Global

Published: 2021-04-23

Total Pages: 2188

ISBN-13: 1799889556

DOWNLOAD EBOOK

With the immense amount of data that is now available online, security concerns have been an issue from the start, and have grown as new technologies are increasingly integrated in data collection, storage, and transmission. Online cyber threats, cyber terrorism, hacking, and other cybercrimes have begun to take advantage of this information that can be easily accessed if not properly handled. New privacy and security measures have been developed to address this cause for concern and have become an essential area of research within the past few years and into the foreseeable future. The ways in which data is secured and privatized should be discussed in terms of the technologies being used, the methods and models for security that have been developed, and the ways in which risks can be detected, analyzed, and mitigated. The Research Anthology on Privatizing and Securing Data reveals the latest tools and technologies for privatizing and securing data across different technologies and industries. It takes a deeper dive into both risk detection and mitigation, including an analysis of cybercrimes and cyber threats, along with a sharper focus on the technologies and methods being actively implemented and utilized to secure data online. Highlighted topics include information governance and privacy, cybersecurity, data protection, challenges in big data, security threats, and more. This book is essential for data analysts, cybersecurity professionals, data scientists, security analysts, IT specialists, practitioners, researchers, academicians, and students interested in the latest trends and technologies for privatizing and securing data.


Association Rule Hiding for Data Mining

Association Rule Hiding for Data Mining

Author: Aris Gkoulalas-Divanis

Publisher:

Published: 2010

Total Pages:

ISBN-13: 9781441965707

DOWNLOAD EBOOK

Privacy and security risks arising from the application of different data mining techniques to large institutional data repositories have been solely investigated by a new research domain, the so-called privacy preserving data mining. Association rule hiding is a new technique on data mining, which studies the problem of hiding sensitive association rules from within the data. Association Rule Hiding for Data Mining addresses the optimization problem of "hiding" sensitive association rules which due to its combinatorial nature admits a number of heuristic solutions that will be proposed and presented in this book. Exact solutions of increased time complexity that have been proposed recently are also presented as well as a number of computationally efficient (parallel) approaches that alleviate time complexity problems, along with a discussion regarding unsolved problems and future directions. Specific examples are provided throughout this book to help the reader study, assimilate and appreciate the important aspects of this challenging problem. Association Rule Hiding for Data Mining is designed for researchers, professors and advanced-level students in computer science studying privacy preserving data mining, association rule mining, and data mining. This book is also suitable for practitioners working in this industry.


Intelligent Systems Design and Applications

Intelligent Systems Design and Applications

Author: Ajith Abraham

Publisher: Springer

Published: 2019-04-13

Total Pages: 1135

ISBN-13: 3030166600

DOWNLOAD EBOOK

This book highlights recent research on Intelligent Systems and Nature Inspired Computing. It presents 212 selected papers from the 18th International Conference on Intelligent Systems Design and Applications (ISDA 2018) and the 10th World Congress on Nature and Biologically Inspired Computing (NaBIC), which was held at VIT University, India. ISDA-NaBIC 2018 was a premier conference in the field of Computational Intelligence and brought together researchers, engineers and practitioners whose work involved intelligent systems and their applications in industry and the “real world.” Including contributions by authors from over 40 countries, the book offers a valuable reference guide for all researchers, students and practitioners in the fields of Computer Science and Engineering.


Privacy Preserving Data Mining

Privacy Preserving Data Mining

Author: Jaideep Vaidya

Publisher: Springer Science & Business Media

Published: 2006-09-28

Total Pages: 124

ISBN-13: 0387294899

DOWNLOAD EBOOK

Privacy preserving data mining implies the "mining" of knowledge from distributed data without violating the privacy of the individual/corporations involved in contributing the data. This volume provides a comprehensive overview of available approaches, techniques and open problems in privacy preserving data mining. Crystallizing much of the underlying foundation, the book aims to inspire further research in this new and growing area. Privacy Preserving Data Mining is intended to be accessible to industry practitioners and policy makers, to help inform future decision making and legislation, and to serve as a useful technical reference.


Association Rule Mining

Association Rule Mining

Author: Chengqi Zhang

Publisher: Springer

Published: 2003-08-01

Total Pages: 247

ISBN-13: 3540460276

DOWNLOAD EBOOK

Due to the popularity of knowledge discovery and data mining, in practice as well as among academic and corporate R&D professionals, association rule mining is receiving increasing attention. The authors present the recent progress achieved in mining quantitative association rules, causal rules, exceptional rules, negative association rules, association rules in multi-databases, and association rules in small databases. This book is written for researchers, professionals, and students working in the fields of data mining, data analysis, machine learning, knowledge discovery in databases, and anyone who is interested in association rule mining.


Frequent Pattern Mining

Frequent Pattern Mining

Author: Charu C. Aggarwal

Publisher: Springer

Published: 2014-08-29

Total Pages: 480

ISBN-13: 3319078216

DOWNLOAD EBOOK

This comprehensive reference consists of 18 chapters from prominent researchers in the field. Each chapter is self-contained, and synthesizes one aspect of frequent pattern mining. An emphasis is placed on simplifying the content, so that students and practitioners can benefit from the book. Each chapter contains a survey describing key research on the topic, a case study and future directions. Key topics include: Pattern Growth Methods, Frequent Pattern Mining in Data Streams, Mining Graph Patterns, Big Data Frequent Pattern Mining, Algorithms for Data Clustering and more. Advanced-level students in computer science, researchers and practitioners from industry will find this book an invaluable reference.


Principles of Data Mining and Knowledge Discovery

Principles of Data Mining and Knowledge Discovery

Author: Jan Zytkow

Publisher: Springer Science & Business Media

Published: 1999-09-01

Total Pages: 608

ISBN-13: 3540664904

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the Third European Conference on Principles and Practice of Knowledge Discovery in Databases, PKDD'99, held in Prague, Czech Republic in September 1999. The 28 revised full papers and 48 poster presentations were carefully reviewed and selected from 106 full papers submitted. The papers are organized in topical sections on time series, applications, taxonomies and partitions, logic methods, distributed and multirelational databases, text mining and feature selection, rules and induction, and interesting and unusual issues.


Privacy-Preserving Data Mining

Privacy-Preserving Data Mining

Author: Charu C. Aggarwal

Publisher: Springer Science & Business Media

Published: 2008-06-10

Total Pages: 524

ISBN-13: 0387709924

DOWNLOAD EBOOK

Advances in hardware technology have increased the capability to store and record personal data. This has caused concerns that personal data may be abused. This book proposes a number of techniques to perform the data mining tasks in a privacy-preserving way. This edited volume contains surveys by distinguished researchers in the privacy field. Each survey includes the key research content as well as future research directions of a particular topic in privacy. The book is designed for researchers, professors, and advanced-level students in computer science, but is also suitable for practitioners in industry.