ASPLOS '17: Architectural Support for Programming Languages and Operating Systems Apr 08, 2017-Apr 12, 2017 Xi'an, China. You can view more information about this proceeding and all of ACM�s other published conference proceedings from the ACM Digital Library: http://www.acm.org/dl.
ASPLOS is a multi-disciplinary conference for research that spans the boundaries of hardware, computer architecture, compilers, languages, operating systems, networking, and applications. ASPLOS provides a high quality forum for scientists and engineers to present their latest research findings in these rapidly changing fields. It has captured some of the major computer systems innovations of the past two decades (e.g., RISC and VLIW processors, small and large-scale multiprocessors, clusters and networks-of-workstations, optimizing compilers, RAID, and network-storage system designs).
Over the past two decades, there has been a huge amount of innovation in both the principles and practice of operating systems Over the same period, the core ideas in a modern operating system - protection, concurrency, virtualization, resource allocation, and reliable storage - have become widely applied throughout computer science. Whether you get a job at Facebook, Google, Microsoft, or any other leading-edge technology company, it is impossible to build resilient, secure, and flexible computer systems without the ability to apply operating systems concepts in a variety of settings. This book examines the both the principles and practice of modern operating systems, taking important, high-level concepts all the way down to the level of working code. Because operating systems concepts are among the most difficult in computer science, this top to bottom approach is the only way to really understand and master this important material.
This book constitutes the proceedings of the 16th International Conference on Distributed Computing and Internet Technology, ICDCIT 2020, held in Bhubaneswar, India, in January 2020. The 20 full and 3 short papers presented in this volume were carefully reviewed and selected from 110 submissions. In addition, the book included 6 invited papers. The contributions were organized in topical sections named: invited talks; concurrent and distributed systems modelling and verification; cloud and grid computing; social networks, machine learning and mobile networks; data processing and blockchain technology; and short papers.
This book constitutes revised selected papers from 7 workshops that were held in conjunction with the ISC High Performance 2016 conference in Frankfurt, Germany, in June 2016. The 45 papers presented in this volume were carefully reviewed and selected for inclusion in this book. They stem from the following workshops: Workshop on Exascale Multi/Many Core Computing Systems, E-MuCoCoS; Second International Workshop on Communication Architectures at Extreme Scale, ExaComm; HPC I/O in the Data Center Workshop, HPC-IODC; International Workshop on OpenPOWER for HPC, IWOPH; Workshop on the Application Performance on Intel Xeon Phi – Being Prepared for KNL and Beyond, IXPUG; Workshop on Performance and Scalability of Storage Systems, WOPSSS; and International Workshop on Performance Portable Programming Models for Accelerators, P3MA.
This practically-focused reference presents a comprehensive overview of the state of the art in Cloud Computing, and examines the potential for future Cloud and Cloud-related technologies to address specific industrial and research challenges. This new edition explores both established and emergent principles, techniques, protocols and algorithms involved with the design, development, and management of Cloud-based systems. The text reviews a range of applications and methods for linking Clouds, undertaking data management and scientific data analysis, and addressing requirements both of data analysis and of management of large scale and complex systems. This new edition also extends into the emergent next generation of mobile telecommunications, relating network function virtualization and mobile edge Cloud Computing, as supports Smart Grids and Smart Cities. As with the first edition, emphasis is placed on the four quality-of-service cornerstones of efficiency, scalability, robustness, and security.
This book presents task-scheduling techniques for emerging complex parallel architectures including heterogeneous multi-core architectures, warehouse-scale datacenters, and distributed big data processing systems. The demand for high computational capacity has led to the growing popularity of multicore processors, which have become the mainstream in both the research and real-world settings. Yet to date, there is no book exploring the current task-scheduling techniques for the emerging complex parallel architectures. Addressing this gap, the book discusses state-of-the-art task-scheduling techniques that are optimized for different architectures, and which can be directly applied in real parallel systems. Further, the book provides an overview of the latest advances in task-scheduling policies in parallel architectures, and will help readers understand and overcome current and emerging issues in this field.
Serverless computing has emerged as a transformative technology, gaining prominence over traditional cloud computing. It is characterized by reduced costs, lower latency, and the elimination of server-side management overhead, and is driven by the increasing adoption of containerization and microservices architectures. However, there is a significant lack of comprehensive resources for academic research purposes in this field. Serverless Computing Concepts, Technology, and Architecture addresses this gap and provides a comprehensive exploration of the fundamental concepts, characteristics, challenges, applications, and futuristic approaches of serverless computing. This book serves as a valuable reference for doctorate and post-doctorate research scholars, undergraduates, and postgraduates in fields such as computer science, information technology, electronics engineering, and other related disciplines. Serverless Computing Concepts, Technology, and Architecture is poised to be a one-stop reference point for those seeking to understand and harness the potential of serverless computing. It will serve as a prominent guide for researchers in this field for years to come, enriching their knowledge and advancing the study of serverless computing.
With growing interest in computer security and the protection of the code and data which execute on commodity computers, the amount of hardware security features in today's processors has increased significantly over the recent years. No longer of just academic interest, security features inside processors have been embraced by industry as well, with a number of commercial secure processor architectures available today. This book aims to give readers insights into the principles behind the design of academic and commercial secure processor architectures. Secure processor architecture research is concerned with exploring and designing hardware features inside computer processors, features which can help protect confidentiality and integrity of the code and data executing on the processor. Unlike traditional processor architecture research that focuses on performance, efficiency, and energy as the first-order design objectives, secure processor architecture design has security as the first-order design objective (while still keeping the others as important design aspects that need to be considered). This book aims to present the different challenges of secure processor architecture design to graduate students interested in research on architecture and hardware security and computer architects working in industry interested in adding security features to their designs. It aims to educate readers about how the different challenges have been solved in the past and what are the best practices, i.e., the principles, for design of new secure processor architectures. Based on the careful review of past work by many computer architects and security researchers, readers also will come to know the five basic principles needed for secure processor architecture design. The book also presents existing research challenges and potential new research directions. Finally, this book presents numerous design suggestions, as well as discusses pitfalls and fallacies that designers should avoid.