Aspects of Infinite Groups

Aspects of Infinite Groups

Author: Benjamin Fine

Publisher: World Scientific

Published: 2008

Total Pages: 253

ISBN-13: 9812793410

DOWNLOAD EBOOK

This book is a festschrift in honor of Professor Anthony Gaglione''s sixtieth birthday. This volume presents an excellent mix of research and expository articles on various aspects of infinite group theory. The papers give a broad overview of present research in infinite group theory in general, and combinatorial group theory and non-Abelian group-based cryptography in particular. They also pinpoint the interactions between combinatorial group theory and mathematical logic, especially model theory.


Basic Notions of Algebra

Basic Notions of Algebra

Author: Igor R. Shafarevich

Publisher: Springer Science & Business Media

Published: 2005-04-13

Total Pages: 272

ISBN-13: 9783540251774

DOWNLOAD EBOOK

Wholeheartedly recommended to every student and user of mathematics, this is an extremely original and highly informative essay on algebra and its place in modern mathematics and science. From the fields studied in every university maths course, through Lie groups to cohomology and category theory, the author shows how the origins of each concept can be related to attempts to model phenomena in physics or in other branches of mathematics. Required reading for mathematicians, from beginners to experts.


Infinite Group Theory: From The Past To The Future

Infinite Group Theory: From The Past To The Future

Author: Paul Baginski

Publisher: World Scientific

Published: 2017-12-26

Total Pages: 258

ISBN-13: 9813204060

DOWNLOAD EBOOK

The development of algebraic geometry over groups, geometric group theory and group-based cryptography, has led to there being a tremendous recent interest in infinite group theory. This volume presents a good collection of papers detailing areas of current interest.


Infinite Groups: Geometric, Combinatorial and Dynamical Aspects

Infinite Groups: Geometric, Combinatorial and Dynamical Aspects

Author: Laurent Bartholdi

Publisher: Springer Science & Business Media

Published: 2006-03-28

Total Pages: 419

ISBN-13: 3764374470

DOWNLOAD EBOOK

This book offers a panorama of recent advances in the theory of infinite groups. It contains survey papers contributed by leading specialists in group theory and other areas of mathematics. Topics include amenable groups, Kaehler groups, automorphism groups of rooted trees, rigidity, C*-algebras, random walks on groups, pro-p groups, Burnside groups, parafree groups, and Fuchsian groups. The accent is put on strong connections between group theory and other areas of mathematics.


Infinite Linear Groups

Infinite Linear Groups

Author: Bertram Wehrfritz

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 243

ISBN-13: 3642870813

DOWNLOAD EBOOK

By a linear group we mean essentially a group of invertible matrices with entries in some commutative field. A phenomenon of the last twenty years or so has been the increasing use of properties of infinite linear groups in the theory of (abstract) groups, although the story of infinite linear groups as such goes back to the early years of this century with the work of Burnside and Schur particularly. Infinite linear groups arise in group theory in a number of contexts. One of the most common is via the automorphism groups of certain types of abelian groups, such as free abelian groups of finite rank, torsion-free abelian groups of finite rank and divisible abelian p-groups of finite rank. Following pioneering work of Mal'cev many authors have studied soluble groups satisfying various rank restrictions and their automor phism groups in this way, and properties of infinite linear groups now play the central role in the theory of these groups. It has recently been realized that the automorphism groups of certain finitely generated soluble (in particular finitely generated metabelian) groups contain significant factors isomorphic to groups of automorphisms of finitely generated modules over certain commutative Noetherian rings. The results of our Chapter 13, which studies such groups of automorphisms, can be used to give much information here.


New Horizons in pro-p Groups

New Horizons in pro-p Groups

Author: Marcus du Sautoy

Publisher: Springer Science & Business Media

Published: 2000-05-25

Total Pages: 444

ISBN-13: 9780817641719

DOWNLOAD EBOOK

A pro-p group is the inverse limit of some system of finite p-groups, that is, of groups of prime-power order where the prime - conventionally denoted p - is fixed. Thus from one point of view, to study a pro-p group is the same as studying an infinite family of finite groups; but a pro-p group is also a compact topological group, and the compactness works its usual magic to bring 'infinite' problems down to manageable proportions. The p-adic integers appeared about a century ago, but the systematic study of pro-p groups in general is a fairly recent development. Although much has been dis covered, many avenues remain to be explored; the purpose of this book is to present a coherent account of the considerable achievements of the last several years, and to point the way forward. Thus our aim is both to stimulate research and to provide the comprehensive background on which that research must be based. The chapters cover a wide range. In order to ensure the most authoritative account, we have arranged for each chapter to be written by a leading contributor (or contributors) to the topic in question. Pro-p groups appear in several different, though sometimes overlapping, contexts.


Algebra IV

Algebra IV

Author: A.I. Kostrikin

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 210

ISBN-13: 3662028697

DOWNLOAD EBOOK

Group theory is one of the most fundamental branches of mathematics. This highly accessible volume of the Encyclopaedia is devoted to two important subjects within this theory. Extremely useful to all mathematicians, physicists and other scientists, including graduate students who use group theory in their work.


Notes on Infinite Permutation Groups

Notes on Infinite Permutation Groups

Author: Meenaxi Bhattacharjee

Publisher: Springer

Published: 2006-11-14

Total Pages: 206

ISBN-13: 3540498133

DOWNLOAD EBOOK

The book, based on a course of lectures by the authors at the Indian Institute of Technology, Guwahati, covers aspects of infinite permutation groups theory and some related model-theoretic constructions. There is basic background in both group theory and the necessary model theory, and the following topics are covered: transitivity and primitivity; symmetric groups and general linear groups; wreatch products; automorphism groups of various treelike objects; model-theoretic constructions for building structures with rich automorphism groups, the structure and classification of infinite primitive Jordan groups (surveyed); applications and open problems. With many examples and exercises, the book is intended primarily for a beginning graduate student in group theory.


Linear Groups

Linear Groups

Author: Martyn R. Dixon

Publisher: CRC Press

Published: 2020-04-03

Total Pages: 329

ISBN-13: 135100803X

DOWNLOAD EBOOK

Linear Groups: The Accent on Infinite Dimensionality explores some of the main results and ideas in the study of infinite-dimensional linear groups. The theory of finite dimensional linear groups is one of the best developed algebraic theories. The array of articles devoted to this topic is enormous, and there are many monographs concerned with matrix groups, ranging from old, classical texts to ones published more recently. However, in the case when the dimension is infinite (and such cases arise quite often), the reality is quite different. The situation with the study of infinite dimensional linear groups is like the situation that has developed in the theory of groups, in the transition from the study of finite groups to the study of infinite groups which appeared about one hundred years ago. It is well known that this transition was extremely efficient and led to the development of a rich and central branch of algebra: Infinite group theory. The hope is that this book can be part of a similar transition in the field of linear groups. Features This is the first book dedicated to infinite-dimensional linear groups This is written for experts and graduate students specializing in algebra and parallel disciplines This book discusses a very new theory and accumulates many important and useful results


Topics in Infinite Group Theory

Topics in Infinite Group Theory

Author: Benjamin Fine

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2021-08-23

Total Pages: 392

ISBN-13: 3110673371

DOWNLOAD EBOOK

This book gives an advanced overview of several topics in infinite group theory. It can also be considered as a rigorous introduction to combinatorial and geometric group theory. The philosophy of the book is to describe the interaction between these two important parts of infinite group theory. In this line of thought, several theorems are proved multiple times with different methods either purely combinatorial or purely geometric while others are shown by a combination of arguments from both perspectives. The first part of the book deals with Nielsen methods and introduces the reader to results and examples that are helpful to understand the following parts. The second part focuses on covering spaces and fundamental groups, including covering space proofs of group theoretic results. The third part deals with the theory of hyperbolic groups. The subjects are illustrated and described by prominent examples and an outlook on solved and unsolved problems.