Artificial Intelligence: Theory and Applications

Artificial Intelligence: Theory and Applications

Author: Endre Pap

Publisher: Springer Nature

Published: 2021-07-15

Total Pages: 353

ISBN-13: 3030727114

DOWNLOAD EBOOK

This book is an up-to-date collection, in AI and environmental research, related to the project ATLAS. AI is used for gaining an understanding of complex research phenomena in the environmental sciences, encompassing heterogeneous, noisy, inaccurate, uncertain, diverse spatio-temporal data and processes. The first part of the book covers new mathematics in the field of AI: aggregation functions with special classes such as triangular norms and copulas, pseudo-analysis, and the introduction to fuzzy systems and decision making. Generalizations of the Choquet integral with applications in decision making as CPT are presented. The second part of the book is devoted to AI in the geo-referenced air pollutants and meteorological data, image processing, machine learning, neural networks, swarm intelligence, robotics, mental well-being and data entry errors. The book is intended for researchers in AI and experts in environmental sciences as well as for Ph.D. students.


An Intuitive Exploration of Artificial Intelligence

An Intuitive Exploration of Artificial Intelligence

Author: Simant Dube

Publisher: Springer Nature

Published: 2021-06-21

Total Pages: 355

ISBN-13: 3030686248

DOWNLOAD EBOOK

This book develops a conceptual understanding of Artificial Intelligence (AI), Deep Learning and Machine Learning in the truest sense of the word. It is an earnest endeavor to unravel what is happening at the algorithmic level, to grasp how applications are being built and to show the long adventurous road in the future. An Intuitive Exploration of Artificial Intelligence offers insightful details on how AI works and solves problems in computer vision, natural language understanding, speech understanding, reinforcement learning and synthesis of new content. From the classic problem of recognizing cats and dogs, to building autonomous vehicles, to translating text into another language, to automatically converting speech into text and back to speech, to generating neural art, to playing games, and the author's own experience in building solutions in industry, this book is about explaining how exactly the myriad applications of AI flow out of its immense potential. The book is intended to serve as a textbook for graduate and senior-level undergraduate courses in AI. Moreover, since the book provides a strong geometrical intuition about advanced mathematical foundations of AI, practitioners and researchers will equally benefit from the book.


Trends in Artificial Intelligence Theory and Applications. Artificial Intelligence Practices

Trends in Artificial Intelligence Theory and Applications. Artificial Intelligence Practices

Author: Hamido Fujita

Publisher: Springer Nature

Published: 2020-09-04

Total Pages: 931

ISBN-13: 3030557898

DOWNLOAD EBOOK

This book constitutes the thoroughly refereed proceedings of the 33rd International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2020, held in Kitakyushu, Japan, in September 2020. The 62 full papers and 17 short papers presented were carefully reviewed and selected from 119 submissions. The IEA/AIE 2020 conference will continue the tradition of emphasizing on applications of applied intelligent systems to solve real-life problems in all areas. These areas include are language processing; robotics and drones; knowledge based systems; innovative applications of intelligent systems; industrial applications; networking applications; social network analysis; financial applications and blockchain; medical and health-related applications; anomaly detection and automated diagnosis; decision-support and agent-based systems; multimedia applications; machine learning; data management and data clustering; pattern mining; system control, classification, and fault diagnosis.


Artificial Intelligence Theory, Models, and Applications

Artificial Intelligence Theory, Models, and Applications

Author: P Kaliraj

Publisher: CRC Press

Published: 2021-10-21

Total Pages: 507

ISBN-13: 1000460606

DOWNLOAD EBOOK

This book examines the fundamentals and technologies of Artificial Intelligence (AI) and describes their tools, challenges, and issues. It also explains relevant theory as well as industrial applications in various domains, such as healthcare, economics, education, product development, agriculture, human resource management, environmental management, and marketing. The book is a boon to students, software developers, teachers, members of boards of studies, and researchers who need a reference resource on artificial intelligence and its applications and is primarily intended for use in courses offered by higher education institutions that strive to equip their graduates with Industry 4.0 skills. FEATURES: Gender disparity in the enterprises involved in the development of AI-based software development as well as solutions to eradicate such gender bias in the AI world A general framework for AI in environmental management, smart farming, e-waste management, and smart energy optimization The potential and application of AI in medical imaging as well as the challenges of AI in precision medicine AI’s role in the diagnosis of various diseases, such as cancer and diabetes The role of machine learning models in product development and statistically monitoring product quality Machine learning to make robust and effective economic policy decisions Machine learning and data mining approaches to provide better video indexing mechanisms resulting in better searchable results ABOUT THE EDITORS: Prof. Dr. P. Kaliraj is Vice Chancellor at Bharathiar University, Coimbatore, India. Prof. Dr. T. Devi is Professor and Head of the Department of Computer Applications, Bharathiar University, Coimbatore, India.


Artificial Intelligence

Artificial Intelligence

Author: Thomas L. Dean

Publisher: Addison-Wesley Professional

Published: 1995

Total Pages: 604

ISBN-13:

DOWNLOAD EBOOK

This book provides a detailed understanding of the broad issues in artificial intelligence and a survey of current AI technology. The author delivers broad coverage of innovative representational techniques, including neural networks, image processing and probabilistic reasoning, alongside the traditional methods of symbolic reasoning. The work is intended for students in artificial intelligence, researchers and LISP programmers.


Decision Theory Models for Applications in Artificial Intelligence: Concepts and Solutions

Decision Theory Models for Applications in Artificial Intelligence: Concepts and Solutions

Author: Sucar, L. Enrique

Publisher: IGI Global

Published: 2011-10-31

Total Pages: 444

ISBN-13: 160960167X

DOWNLOAD EBOOK

One of the goals of artificial intelligence (AI) is creating autonomous agents that must make decisions based on uncertain and incomplete information. The goal is to design rational agents that must take the best action given the information available and their goals. Decision Theory Models for Applications in Artificial Intelligence: Concepts and Solutions provides an introduction to different types of decision theory techniques, including MDPs, POMDPs, Influence Diagrams, and Reinforcement Learning, and illustrates their application in artificial intelligence. This book provides insights into the advantages and challenges of using decision theory models for developing intelligent systems.


Artificial Intelligence for Sustainable Development: Theory, Practice and Future Applications

Artificial Intelligence for Sustainable Development: Theory, Practice and Future Applications

Author: Aboul Ella Hassanien

Publisher: Springer Nature

Published: 2020-08-31

Total Pages: 310

ISBN-13: 3030519201

DOWNLOAD EBOOK

This book highlights the latest advances in the field of artificial intelligence and related technologies, with a special focus on sustainable development and environmentally friendly artificial intelligence applications. Discussing theory, applications and research, it covers all aspects of artificial intelligence in the context of sustainable development.


Computational Intelligence, Theory and Applications

Computational Intelligence, Theory and Applications

Author: Bernd Reusch

Publisher: Springer Science & Business Media

Published: 2006-09-09

Total Pages: 802

ISBN-13: 3540347836

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 9th Dortmund Fuzzy Days, Dortmund, Germany, 2006. This conference has established itself as an international forum for the discussion of new results in the field of Computational Intelligence. The papers presented here, all thoroughly reviewed, are devoted to foundational and practical issues in fuzzy systems, neural networks, evolutionary algorithms, and machine learning and thus cover the whole range of computational intelligence.


Application of Artificial Intelligence to Assessment

Application of Artificial Intelligence to Assessment

Author: Hong Jiao

Publisher: IAP

Published: 2020-03-01

Total Pages: 218

ISBN-13: 1641139536

DOWNLOAD EBOOK

The general theme of this book is to present the applications of artificial intelligence (AI) in test development. In particular, this book includes research and successful examples of using AI technology in automated item generation, automated test assembly, automated scoring, and computerized adaptive testing. By utilizing artificial intelligence, the efficiency of item development, test form construction, test delivery, and scoring could be dramatically increased. Chapters on automated item generation offer different perspectives related to generating a large number of items with controlled psychometric properties including the latest development of using machine learning methods. Automated scoring is illustrated for different types of assessments such as speaking and writing from both methodological aspects and practical considerations. Further, automated test assembly is elaborated for the conventional linear tests from both classical test theory and item response theory perspectives. Item pool design and assembly for the linear-on-the-fly tests elaborates more complications in practice when test security is a big concern. Finally, several chapters focus on computerized adaptive testing (CAT) at either item or module levels. CAT is further illustrated as an effective approach to increasing test-takers’ engagement in testing. In summary, the book includes both theoretical, methodological, and applied research and practices that serve as the foundation for future development. These chapters provide illustrations of efforts to automate the process of test development. While some of these automation processes have become common practices such as automated test assembly, automated scoring, and computerized adaptive testing, some others such as automated item generation calls for more research and exploration. When new AI methods are emerging and evolving, it is expected that researchers can expand and improve the methods for automating different steps in test development to enhance the automation features and practitioners can adopt quality automation procedures to improve assessment practices.


Data Mining With Decision Trees: Theory And Applications (2nd Edition)

Data Mining With Decision Trees: Theory And Applications (2nd Edition)

Author: Oded Z Maimon

Publisher: World Scientific

Published: 2014-09-03

Total Pages: 328

ISBN-13: 9814590096

DOWNLOAD EBOOK

Decision trees have become one of the most powerful and popular approaches in knowledge discovery and data mining; it is the science of exploring large and complex bodies of data in order to discover useful patterns. Decision tree learning continues to evolve over time. Existing methods are constantly being improved and new methods introduced.This 2nd Edition is dedicated entirely to the field of decision trees in data mining; to cover all aspects of this important technique, as well as improved or new methods and techniques developed after the publication of our first edition. In this new edition, all chapters have been revised and new topics brought in. New topics include Cost-Sensitive Active Learning, Learning with Uncertain and Imbalanced Data, Using Decision Trees beyond Classification Tasks, Privacy Preserving Decision Tree Learning, Lessons Learned from Comparative Studies, and Learning Decision Trees for Big Data. A walk-through guide to existing open-source data mining software is also included in this edition.This book invites readers to explore the many benefits in data mining that decision trees offer: