The intention of this book is to give an introduction to, and an overview of, the field of artificial intelligence techniques in power systems, with a look at various application studies.
Automatic learning is a complex, multidisciplinary field of research and development, involving theoretical and applied methods from statistics, computer science, artificial intelligence, biology and psychology. Its applications to engineering problems, such as those encountered in electrical power systems, are therefore challenging, while extremely promising. More and more data have become available, collected from the field by systematic archiving, or generated through computer-based simulation. To handle this explosion of data, automatic learning can be used to provide systematic approaches, without which the increasing data amounts and computer power would be of little use. Automatic Learning Techniques in Power Systems is dedicated to the practical application of automatic learning to power systems. Power systems to which automatic learning can be applied are screened and the complementary aspects of automatic learning, with respect to analytical methods and numerical simulation, are investigated. This book presents a representative subset of automatic learning methods - basic and more sophisticated ones - available from statistics (both classical and modern), and from artificial intelligence (both hard and soft computing). The text also discusses appropriate methodologies for combining these methods to make the best use of available data in the context of real-life problems. Automatic Learning Techniques in Power Systems is a useful reference source for professionals and researchers developing automatic learning systems in the electrical power field.
Provides insight on both classical means and new trends in the application of power electronic and artificial intelligence techniques in power system operation and control This book presents advanced solutions for power system controllability improvement, transmission capability enhancement and operation planning. The book is organized into three parts. The first part describes the CSC-HVDC and VSC-HVDC technologies, the second part presents the FACTS devices, and the third part refers to the artificial intelligence techniques. All technologies and tools approached in this book are essential for power system development to comply with the smart grid requirements. Discusses detailed operating principles and diagrams, theory of modeling, control strategies and physical installations around the world of HVDC and FACTS systems Covers a wide range of Artificial Intelligence techniques that are successfully applied for many power system problems, from planning and monitoring to operation and control Each chapter is carefully edited, with drawings and illustrations that helps the reader to easily understand the principles of operation or application Advanced Solutions in Power Systems: HVDC, FACTS, and Artificial Intelligence is written for graduate students, researchers in transmission and distribution networks, and power system operation. This book also serves as a reference for professional software developers and practicing engineers.
This comprehensive reference text discusses the fundamental concepts of artificial intelligence and its applications in a single volume. Artificial Intelligence: Fundamentals and Applications presents a detailed discussion of basic aspects and ethics in the field of artificial intelligence and its applications in areas, including electronic devices and systems, consumer electronics, automobile engineering, manufacturing, robotics and automation, agriculture, banking, and predictive analysis. Aimed at senior undergraduate and graduate students in the field of electrical engineering, electronics engineering, manufacturing engineering, pharmacy, and healthcare, this text: Discusses advances in artificial intelligence and its applications. Presents the predictive analysis and data analysis using artificial intelligence. Covers the algorithms and pseudo-codes for different domains. Discusses the latest development of artificial intelligence in the field of practical speech recognition, machine translation, autonomous vehicles, and household robotics. Covers the applications of artificial intelligence in fields, including pharmacy and healthcare, electronic devices and systems, manufacturing, consumer electronics, and robotics.
This book presents research in artificial techniques using intelligence for energy transition, outlining several applications including production systems, energy production, energy distribution, energy management, renewable energy production, cyber security, industry 4.0 and internet of things etc. The book goes beyond standard application by placing a specific focus on the use of AI techniques to address the challenges related to the different applications and topics of energy transition. The contributions are classified according to the market and actor interactions (service providers, manufacturers, customers, integrators, utilities etc.), to the SG architecture model (physical layer, infrastructure layer, and business layer), to the digital twin of SG (business model, operational model, fault/transient model, and asset model), and to the application domain (demand side management, load monitoring, micro grids, energy consulting (residents, utilities), energy saving, dynamic pricing revenue management and smart meters, etc.).
Artificial intelligence (AI) can successfully help in solving real-world problems in power transmission and distribution systems because AI-based schemes are fast, adaptive, and robust and are applicable without any knowledge of the system parameters. This book considers the application of AI methods for the protection of different types and topologies of transmission and distribution lines. It explains the latest pattern-recognition-based methods as applicable to detection, classification, and location of a fault in the transmission and distribution lines, and to manage smart power systems including all the pertinent aspects. FEATURES Provides essential insight on uses of different AI techniques for pattern recognition, classification, prediction, and estimation, exclusive to power system protection issues Presents an introduction to enhanced electricity system analysis using decision-making tools Covers AI applications in different protective relaying functions Discusses issues and challenges in the protection of transmission and distribution systems Includes a dedicated chapter on case studies and applications This book is aimed at graduate students, researchers, and professionals in electrical power system protection, stability, and smart grids.
This book evaluates the role of innovative machine learning and deep learning methods in dealing with power system issues, concentrating on recent developments and advances that improve planning, operation, and control of power systems. Cutting-edge case studies from around the world consider prediction, classification, clustering, and fault/event detection in power systems, providing effective and promising solutions for many novel challenges faced by power system operators. Written by leading experts, the book will be an ideal resource for researchers and engineers working in the electrical power engineering and power system planning communities, as well as students in advanced graduate-level courses.
With the considerable increase of AI applications, AI is being increasingly used to solve optimization problems in engineering. In the past two decades, the applications of artificial intelligence in power systems have attracted much research. This book covers the current level of applications of artificial intelligence to the optimization problems
INTELLIGENT RENEWABLE ENERGY SYSTEMS This collection of papers on artificial intelligence and other methods for improving renewable energy systems, written by industry experts, is a reflection of the state of the art, a must-have for engineers, maintenance personnel, students, and anyone else wanting to stay abreast with current energy systems concepts and technology. Renewable energy is one of the most important subjects being studied, researched, and advanced in today’s world. From a macro level, like the stabilization of the entire world’s economy, to the micro level, like how you are going to heat or cool your home tonight, energy, specifically renewable energy, is on the forefront of the discussion. This book illustrates modelling, simulation, design and control of renewable energy systems employed with recent artificial intelligence (AI) and optimization techniques for performance enhancement. Current renewable energy sources have less power conversion efficiency because of its intermittent and fluctuating behavior. Therefore, in this regard, the recent AI and optimization techniques are able to deal with data ambiguity, noise, imprecision, and nonlinear behavior of renewable energy sources more efficiently compared to classical soft computing techniques. This book provides an extensive analysis of recent state of the art AI and optimization techniques applied to green energy systems. Subsequently, researchers, industry persons, undergraduate and graduate students involved in green energy will greatly benefit from this comprehensive volume, a must-have for any library. Audience Engineers, scientists, managers, researchers, students, and other professionals working in the field of renewable energy.
This volume deals with different computational intelligence (CI) techniques for solving real world power industry problems. It will be extremely helpful for the researchers as well as the practicing engineers in the power industry.