Artificial Intelligence (AI) is a rapidly developing field of computer science which now plays an increasingly important role in many disciplines. A catalyst for significant change, research into AI is of particular importance in fields such as medicine and education, and as such has become an area to watch for many people worldwide. This book presents the proceedings of AIMEE 2023, the 7th International Conference on Artificial Intelligence, Medical Engineering and Education, held on 9 and 10 November 2023 in Guangzhou, China. The conference brought together top international researchers from around the world to exchange research results and address open issues in AI, medical engineering and education. A total of 238 submissions were received for AIMEE 2023, of which 89 papers were selected for presentation and publication after a rigorous international peer review process. The book is divided into 3 sections, covering artificial intelligence and scientific methodology; systems engineering and analysis: concepts, methods, and applications; and education reform and innovation. Presenting papers which explore and discuss many novel concepts and methodologies contributing to the rapid evolution of artificial intelligence and its applications, the book will be of interest to all those working in the relevant fields.
Deep Learning (DL) is a method of machine learning, running over Artificial Neural Networks, that uses multiple layers to extract high-level features from large amounts of raw data. Deep Learning methods apply levels of learning to transform input data into more abstract and composite information. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications gives readers a complete overview of the essential concepts of Deep Learning and its applications in the field of Biomedical Engineering. Deep learning has been rapidly developed in recent years, in terms of both methodological constructs and practical applications. Deep Learning provides computational models of multiple processing layers to learn and represent data with higher levels of abstraction. It is able to implicitly capture intricate structures of large-scale data and is ideally suited to many of the hardware architectures that are currently available. The ever-expanding amount of data that can be gathered through biomedical and clinical information sensing devices necessitates the development of machine learning and AI techniques such as Deep Learning and Convolutional Neural Networks to process and evaluate the data. Some examples of biomedical and clinical sensing devices that use Deep Learning include: Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound, Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), Magnetic Particle Imaging, EE/MEG, Optical Microscopy and Tomography, Photoacoustic Tomography, Electron Tomography, and Atomic Force Microscopy. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications provides the most complete coverage of Deep Learning applications in biomedical engineering available, including detailed real-world applications in areas such as computational neuroscience, neuroimaging, data fusion, medical image processing, neurological disorder diagnosis for diseases such as Alzheimer's, ADHD, and ASD, tumor prediction, as well as translational multimodal imaging analysis. - Presents a comprehensive handbook of the biomedical engineering applications of DL, including computational neuroscience, neuroimaging, time series data such as MRI, functional MRI, CT, EEG, MEG, and data fusion of biomedical imaging data from disparate sources, such as X-Ray/CT - Helps readers understand key concepts in DL applications for biomedical engineering and health care, including manifold learning, classification, clustering, and regression in neuroimaging data analysis - Provides readers with key DL development techniques such as creation of algorithms and application of DL through artificial neural networks and convolutional neural networks - Includes coverage of key application areas of DL such as early diagnosis of specific diseases such as Alzheimer's, ADHD, and ASD, and tumor prediction through MRI and translational multimodality imaging and biomedical applications such as detection, diagnostic analysis, quantitative measurements, and image guidance of ultrasonography
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
This book constitutes the refereed proceedings of the 17th Conference on Artificial Intelligence in Medicine, AIME 2019, held in Poznan, Poland, in June 2019. The 22 revised full and 31 short papers presented were carefully reviewed and selected from 134 submissions. The papers are organized in the following topical sections: deep learning; simulation; knowledge representation; probabilistic models; behavior monitoring; clustering, natural language processing, and decision support; feature selection; image processing; general machine learning; and unsupervised learning.
Handbook of Artificial Intelligence in Biomedical Engineering focuses on recent AI technologies and applications that provide some very promising solutions and enhanced technology in the biomedical field. Recent advancements in computational techniques, such as machine learning, Internet of Things (IoT), and big data, accelerate the deployment of biomedical devices in various healthcare applications. This volume explores how artificial intelligence (AI) can be applied to these expert systems by mimicking the human expert’s knowledge in order to predict and monitor the health status in real time. The accuracy of the AI systems is drastically increasing by using machine learning, digitized medical data acquisition, wireless medical data communication, and computing infrastructure AI approaches, helping to solve complex issues in the biomedical industry and playing a vital role in future healthcare applications. The volume takes a multidisciplinary perspective of employing these new applications in biomedical engineering, exploring the combination of engineering principles with biological knowledge that contributes to the development of revolutionary and life-saving concepts.
This book focuses on the implementation of Artificial Intelligence in Business, Education and Healthcare, It includes research articles and expository papers on the applications of Artificial Intelligence on Decision Making, Entrepreneurship, Social Media, Healthcare, Education, Public Sector, FinTech, and RegTech. It also discusses the role of Artificial Intelligence in the current COVID-19 pandemic, in the health sector, education, and others. It also discusses the impact of Artificial Intelligence on decision-making in vital sectors of the economy.
This volume tackles a quickly-evolving field of inquiry, mapping the existing discourse as part of a general attempt to place current developments in historical context; at the same time, breaking new ground in taking on novel subjects and pursuing fresh approaches. The term "A.I." is used to refer to a broad range of phenomena, from machine learning and data mining to artificial general intelligence. The recent advent of more sophisticated AI systems, which function with partial or full autonomy and are capable of tasks which require learning and 'intelligence', presents difficult ethical questions, and has drawn concerns from many quarters about individual and societal welfare, democratic decision-making, moral agency, and the prevention of harm. This work ranges from explorations of normative constraints on specific applications of machine learning algorithms today-in everyday medical practice, for instance-to reflections on the (potential) status of AI as a form of consciousness with attendant rights and duties and, more generally still, on the conceptual terms and frameworks necessarily to understand tasks requiring intelligence, whether "human" or "A.I."
Bioengineering and biomedical engineering is one of the most advanced fields in science and technology worldwide, and has spurred advancements in medicine and biology. Biomedical Engineering Education and Advanced Bioengineering Learning: Interdisciplinary Concepts explores how healthcare practices have been steered toward emerging frontiers, including, among others, functional medical imaging, regenerative medicine, nanobiomedicine, enzyme engineering, and artificial sensory substitution. From comprehensive descriptions of state-of-the-art educational programs to a methodical treatment of the latest advancements, this book provides a solid point of reference necessary for establishing further research in this life saving field.
This book gathers high-quality, peer-reviewed research papers presented at the Second International Conference on Computer Science, Engineering and Education Applications (ICCSEEA2019), held in Kiev, Ukraine on 26–27 January 2019, and jointly organized by the National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute” and the International Research Association of Modern Education and Computer Science. The papers discuss state-of-the-art topics and advances in computer science; neural networks; pattern recognition; engineering techniques; genetic coding systems; deep learning and its medical applications; and knowledge representation and its applications in education. Given its scope, the book offers an excellent resource for researchers, engineers, management practitioners, and graduate and undergraduate students interested in computer science and its applications in engineering and education.
Internet of Things in Biomedical Engineering presents the most current research in Internet of Things (IoT) applications for clinical patient monitoring and treatment. The book takes a systems-level approach for both human-factors and the technical aspects of networking, databases and privacy. Sections delve into the latest advances and cutting-edge technologies, starting with an overview of the Internet of Things and biomedical engineering, as well as a focus on 'daily life.' Contributors from various experts then discuss 'computer assisted anthropology,' CLOUDFALL, and image guided surgery, as well as bio-informatics and data mining. This comprehensive coverage of the industry and technology is a perfect resource for students and researchers interested in the topic. - Presents recent advances in IoT for biomedical engineering, covering biometrics, bioinformatics, artificial intelligence, computer vision and various network applications - Discusses big data and data mining in healthcare and other IoT based biomedical data analysis - Includes discussions on a variety of IoT applications and medical information systems - Includes case studies and applications, as well as examples on how to automate data analysis with Perl R in IoT