This volume presents approaches and methodologies for predicting the structure and diversity of key aquatic communities (namely, diatoms, benthic macroinvertebrates and fish), under natural conditions and under man-made disturbance. The intent is to offer an organized means for modeling, evaluating and restoring freshwater ecosystems.
This book introduces the 3R concept applied to wastewater treatment and resource recovery under a double perspective. Firstly, it deals with innovative technologies leading to: Reducing energy requirements, space and impacts; Reusing water and sludge of sufficient quality; and Recovering resources such as energy, nutrients, metals and chemicals, including biopolymers. Besides targeting effective C,N&P removal, other issues such as organic micropollutants, gases and odours emissions are considered. Most of the technologies analysed have been tested at pilot- or at full-scale. Tools and methods for their Economic, Environmental, Legal and Social impact assessment are described. The 3R concept is also applied to Innovative Processes design, considering different levels of innovation: Retrofitting, where novel units are included in more conventional processes; Re-Thinking, which implies a substantial flowsheet modification; and Re-Imagining, with completely new conceptions. Tools are presented for Modelling, Optimising and Selecting the most suitable plant layout for each particular scenario from a holistic technical, economic and environmental point of view.
The first report in a new flagship series, WIPO Technology Trends, aims to shed light on the trends in innovation in artificial intelligence since the field first developed in the 1950s.
The European DayWater project has developed a prototype of an Adaptive Decision Support System (ADSS) related to urban stormwater pollution source control. The DayWater ADSS greatly facilitates decision-making for stormwater source control, which is currently impeded by the large number of stakeholders involved and by the necessary multidisciplinary knowledge. This book presents the results of this project, providing new insights into both technical and management issues. The main objectives of its technical chapters are pollution source control modelling, risk and impact assessment, and evaluation and comparison of best management practices. It also covers management aspects, such as the analysis of the decision-making processes in stormwater source control, at a European scale, and stormwater management strategies in general. The combination of scientific-technical and socio-managerial knowledge, with the strong cooperation of numerous end-users, reflects the innovative character of this book which includes actual applications of the ADSS prototype in significant case studies. DayWater: an Adaptive Decision Support System for Urban Stormwater Management contains 26 chapters collectively prepared by DayWater scientific partners and end-users associated with this European Research and Development project. It includes: A general presentation of the DayWater Adaptive Decision Support System (ADSS) structure and operation modes A detailed description of the major components of this ADSS prototype The assessment of its components in significant case studies in France, Germany and Sweden The proceedings of the International Conference on Decision Support Systems for Integrated Urban Water Management, held in Paris on 3-4 November 2005. The book presents the ADSS prototype including a combination of freely accessible on-line databases, guidance documents, “road maps” and modelling or multi-criteria analysis tools. As demonstrated in several significant case studies the challenge for stormwater managers is to make the benefits of urban stormwater management visible to society, resulting in active co-operation of a diversity of stakeholders. Only then, will sustainable management succeed. DayWater: an Adaptive Decision Support System for Urban Stormwater Management advances this cause of sustainable urban management through Urban stormwater management, and makes achievable (by means of risk and vulnerability tools which are included) the goal of integrated urban water management (IUWM).
Today there is increasing pressure on the water infrastructure and although unsustainable water extraction and wastewater handling can continue for a while, at some point water needs to be managed in a way that is sustainable in the long-term. We need to handle water utilities “smarter”. New and effective tools and technologies are becoming available at an affordable cost and these technologies are steadily changing water infrastructure options. The quality and robustness of sensors are increasing rapidly and their reliability makes the automatic handling of critical processes viable. Online and real-time control means safer and more effective operation. The combination of better sensors and new water treatment technologies is a strong enabler for decentralised and diversified water treatment. Plants can be run with a minimum of personnel attendance. In the future, thousands of sensors in the water utility cycle will handle all the complexity in an effective way. Smart Water Utilities: Complexity Made Simple provides a framework for Smart Water Utilities based on an M-A-D (Measurement-Analysis-Decision). This enables the organisation and implementation of “Smart” in a water utility by providing an overview of supporting technologies and methods. The book presents an introduction to methods and tools, providing a perspective of what can and could be achieved. It provides a toolbox for all water challenges and is essential reading for the Water Utility Manager, Engineer and Director and for Consultants, Designers and Researchers.
Artificial intelligence (AI) is a transformative technology that holds promise for tremendous societal and economic benefit. AI has the potential to revolutionize how we live, work, learn, discover, and communicate. AI research can further our national priorities, including increased economic prosperity, improved educational opportunities and quality of life, and enhanced national and homeland security. Because of these potential benefits, the U.S. government has invested in AI research for many years. Yet, as with any significant technology in which the Federal government has interest, there are not only tremendous opportunities but also a number of considerations that must be taken into account in guiding the overall direction of Federally-funded R&D in AI. On May 3, 2016, the Administration announced the formation of a new NSTC Subcommittee on Machine Learning and Artificial intelligence, to help coordinate Federal activity in AI.1 This Subcommittee, on June 15, 2016, directed the Subcommittee on Networking and Information Technology Research and Development (NITRD) to create a National Artificial Intelligence Research and Development Strategic Plan. A NITRD Task Force on Artificial Intelligence was then formed to define the Federal strategic priorities for AI R&D, with particular attention on areas that industry is unlikely to address. This National Artificial Intelligence R&D Strategic Plan establishes a set of objectives for Federally-funded AI research, both research occurring within the government as well as Federally-funded research occurring outside of government, such as in academia. The ultimate goal of this research is to produce new AI knowledge and technologies that provide a range of positive benefits to society, while minimizing the negative impacts.
Artificial Intelligence in Process Engineering aims to present a diverse sample of Artificial Intelligence (AI) applications in process engineering. The book contains contributions, selected by the editors based on educational value and diversity of AI methods and process engineering application domains. Topics discussed in the text include the use of qualitative reasoning for modeling and simulation of chemical systems; the use of qualitative models in discrete event simulation to analyze malfunctions in processing systems; and the diagnosis of faults in processes that are controlled by Programmable Logic Controllers. There are also debates on the issue of quantitative versus qualitative information. The control of batch processes, a design of a system that synthesizes bioseparation processes, and process design in the domain of chemical (rather than biochemical) systems are likewise covered in the text. This publication will be of value to industrial engineers and process engineers and researchers.
The Toolkit for Water Policies and Governance compiles policies, governance arrangements and related tools that facilitate the design and implementation of water management practices in line with the OECD Council Recommendation on Water.