Machine Learning for Decision Makers

Machine Learning for Decision Makers

Author: Patanjali Kashyap

Publisher: Apress

Published: 2018-01-04

Total Pages: 381

ISBN-13: 1484229886

DOWNLOAD EBOOK

Take a deep dive into the concepts of machine learning as they apply to contemporary business and management. You will learn how machine learning techniques are used to solve fundamental and complex problems in society and industry. Machine Learning for Decision Makers serves as an excellent resource for establishing the relationship of machine learning with IoT, big data, and cognitive and cloud computing to give you an overview of how these modern areas of computing relate to each other. This book introduces a collection of the most important concepts of machine learning and sets them in context with other vital technologies that decision makers need to know about. These concepts span the process from envisioning the problem to applying machine-learning techniques to your particular situation. This discussion also provides an insight to help deploy the results to improve decision-making. The book uses case studies and jargon busting to help you grasp the theory of machine learning quickly. You'll soon gain the big picture of machine learning and how it fits with other cutting-edge IT services. This knowledge will give you confidence in your decisions for the future of your business. What You Will Learn Discover the machine learning, big data, and cloud and cognitive computing technology stack Gain insights into machine learning concepts and practices Understand business and enterprise decision-making using machine learning Absorb machine-learning best practices Who This Book Is For Managers tasked with making key decisions who want to learn how and when machine learning and related technologies can help them.


Artificial Intelligence and Deep Learning for Decision Makers

Artificial Intelligence and Deep Learning for Decision Makers

Author: Dr. Jagreet Kaur

Publisher: BPB Publications

Published: 2019-12-28

Total Pages: 242

ISBN-13: 9389328683

DOWNLOAD EBOOK

Learn modern-day technologies from modern-day technical giants DESCRIPTIONÊ The aim of this book is to help the readers understand the concept of artificial intelligence and deep learning methods and implement them into their businesses and organizations.Ê The first two chapters describe the introduction of the artificial intelligence and deep learning methods. In the first chapter, the concept of human thinking process, starting from the biochemical responses within the structure of neurons to the problem-solving steps through computational thinking skills are discussed. All chapters after the first two should be considered as the study of different technological and Artificial Intelligence giants of current age. These chapters are placed in a way that each chapter could be considered a separate study of a separate company, which includes the achievements of intelligent services currently provided by the company, discussion on the business model of the company towards the use of the deep learning technologies, the advancement of the web services which are incorporated with intelligent capability introduced by company, the efforts of the company in contributing to the development of the artificial intelligence and deep learning research. KEY FEATURES Real-world success and failure stories of artificial intelligence explained Understand concepts of artificial intelligence and deep learning methodsÊ Learn how to use artificial intelligence and deep learning methods Know how to prepare dataset and implement models using industry leading Python packagesÊ YouÕll be able to apply and analyze the results produced by the models for prediction WHAT WILL YOU LEARN How to use the algorithms written in the Python programming language to design models and perform predictions in general datasets Understand use cases in different industries related to the implementation of artificial intelligence and deep learning methods Learn the use of potential ideas in artificial intelligence and deep learning methods to improve the operational processes or new products and how services can be produced based on the methods WHO THIS BOOK IS FORÊ This book is targeted to business and organization leaders, technology enthusiasts, professionals, and managers who seek knowledge of artificial intelligence and deep learning methods. Table of Contents Artificial Intelligence and Deep Learning Data Science for Business Analysis Decision Making Intelligent Computing Strategies By GoogleÊ Cognitive Learning Services in IBM Watson Advancement web services by BaiduÊ Improved Social Business by Facebook Personalized Intelligent Computing by Apple Cloud Computing Intelligent by Microsoft


Artificial Intelligence and Deep Learning for Decision Makers

Artificial Intelligence and Deep Learning for Decision Makers

Author: Kaur Dr. Jagreet

Publisher: BPB Publications

Published: 2019-12-28

Total Pages: 241

ISBN-13: 9389328691

DOWNLOAD EBOOK

Learn modern-day technologies from modern-day technical giants.KEY FEATURES1. Real-world success and failure stories of artificial intelligence explained2. Understand concepts of artificial intelligence and deep learning methods 3. Learn how to use artificial intelligence and deep learning methods4. Know how to prepare dataset and implement models using industry leading Python packages 5. You'll be able to apply and analyze the results produced by the models for predictionDESCRIPTION The aim of this book is to help the readers understand the concept of artificial intelligence and deep learning methods and implement them into their businesses and organizations. The first two chapters describe the introduction of the artificial intelligence and deep learning methods. In the first chapter, the concept of human thinking process, starting from the biochemical responses within the structure of neurons to the problem-solving steps through computational thinking skills are discussed. All chapters after the first two should be considered as the study of different technological and Artificial Intelligence giants of current age. These chapters are placed in a way that each chapter could be considered a separate study of a separate company, which includes the achievements of intelligent services currently provided by the company, discussion on the business model of the company towards the use of the deep learning technologies, the advancement of the web services which are incorporated with intelligent capability introduced by company, the efforts of the company in contributing to the development of the artificial intelligence and deep learning research. WHAT WILL YOU LEARN How to use the algorithms written in the Python programming language to design models and perform predictions in general datasetsUnderstand use cases in different industries related to the implementation of artificial intelligence and deep learning methodsLearn the use of potential ideas in artificial intelligence and deep learning methods to improve the operational processes or new products and how services can be produced based on the methodsWHO THIS BOOK IS FORThis book is targeted to business and organization leaders, technology enthusiasts, professionals, and managers who seek knowledge of artificial intelligence and deep learning methods.Table of Contents1. Artificial Intelligence and Deep Learning2. Data Science for Business Analysis3. Decision Making4. Intelligent Computing Strategies By Google 5. Cognitive Learning Services in IBM Watson6. Advancement web services by Baidu 7. Improved Social Business by Facebook8. Personalized Intelligent Computing by Apple9. Cloud Computing Intelligent by MicrosoftAbout the AuthorDr. Jagreet KaurDr. Jagreet Kaur is a doctorate in computer science and engineering. Her topic of thesis was "e;ARTIFICIAL INTELLIGENCE BASED ANALYTICAL PLATFORM FOR PREDICTIVE ANALYSIS IN HEALTH CARE."e; With more than 12 years of experience in academics and research, she is working in data wrangling, machine learning and deeplearning algorithms on large datasets, real-time data often in production environments for data science solutions and data products to get actionable insights for the last four years. She also possesses ten international publications and five national publications under her name.Her skill set includes data engineering skills (Hadoop, Apache Spark, Apache Kafka, Cassandra, Hive, Flume, Scoop, and Elasticsearch), programming skills (Python, Angularjs, D3.js , Machine Learning, and R), data science skills (Statistics, Machine Learning, NLP, NLTK, Artificial Intelligence, R, Python, Pandas, Sklearn, Hadoop, SQL, Statistical Modeling, Data Munging, Decision Science, Machine Learning, Graph Analysis, Text Mining and Optimization, and Web Scraping, Deep learning packages:- Theano, Keras, Tensorflow, Pytorch, Julia) and Algorithms Specialization (Regression Algorithms: Linear Regression, Random Forest Regressor, XGBoost, SVR, Ridge Regression, Lasso Regression, Neural Networks Classification Algorithms: Decision Trees, Random Forest Classifier, Support Vector Machines(SVM), Logistic Regression, KNN Classifier, Neural Network, Clustering Algorithms: K-Means, DBSCAN, Deep Learning Algorithms: Simple RNN, LSTM Network, GRU)Currently, she works as a Chief Operating Officer (COO) and Chief Data Scientist in Xenonstack. Under her Guidance, more than 400 projects are already developed and productionized which also includes more than 200 AI and data science projects. Navdeep Singh GillNaveed Singh Gill is a technology and solution architect having more than 15 years of experience in the IT and Telecom industry. For the past six years, he is working in big data analytics, automation and advanced analytics using machine learning and deep learning for planning and architecting of data science solutions and data products. He's also working in 3 As (Analytics, Automation, and AI), more focused on writing software for building data lake, analytics platform , NoSQL deployments, data migration, data modelling tasks, ML/DL on real-time data often in production environments.He started his career with HFCL Infotel as a network engineer for managing the technical network of Broadband Customers with Linux servers and Cisco routers. He also worked in Ericsson, where he handled the synchronization plan and implementation for synchronization of Microwave Network and Media Gateway, MSS, and Core Network. SSU Implementation Planning and Optimization with respect to IP RAN, Mobile Backhaul Solution- Optimization of Existing Microwave Network to Ethernet, Microwave Hybrid Solution, Convergence to all IP, SIU Implementation for conversion to IP of Existing BTS,GB over IP.His area of expertise includes Hadoop, Openstack, DevOps, Kubernetes, Dockers, Amazon web services, Apache Spark, Apache Storm, Apache Kafka, Hbase, Solr, Apache FlinkNutch, Mapreduce, Pig, Hive, Flume, Scoop, ElasticSearch, and programming expertise includes Python, Angular.js, and Node.js.


Artificial Intelligence Techniques for Rational Decision Making

Artificial Intelligence Techniques for Rational Decision Making

Author: Tshilidzi Marwala

Publisher: Springer

Published: 2014-10-20

Total Pages: 178

ISBN-13: 3319114247

DOWNLOAD EBOOK

Develops insights into solving complex problems in engineering, biomedical sciences, social science and economics based on artificial intelligence. Some of the problems studied are in interstate conflict, credit scoring, breast cancer diagnosis, condition monitoring, wine testing, image processing and optical character recognition. The author discusses and applies the concept of flexibly-bounded rationality which prescribes that the bounds in Nobel Laureate Herbert Simon’s bounded rationality theory are flexible due to advanced signal processing techniques, Moore’s Law and artificial intelligence. Artificial Intelligence Techniques for Rational Decision Making examines and defines the concepts of causal and correlation machines and applies the transmission theory of causality as a defining factor that distinguishes causality from correlation. It develops the theory of rational counterfactuals which are defined as counterfactuals that are intended to maximize the attainment of a particular goal within the context of a bounded rational decision making process. Furthermore, it studies four methods for dealing with irrelevant information in decision making: Theory of the marginalization of irrelevant information Principal component analysis Independent component analysis Automatic relevance determination method In addition it studies the concept of group decision making and various ways of effecting group decision making within the context of artificial intelligence. Rich in methods of artificial intelligence including rough sets, neural networks, support vector machines, genetic algorithms, particle swarm optimization, simulated annealing, incremental learning and fuzzy networks, this book will be welcomed by researchers and students working in these areas.


AI and education

AI and education

Author: Miao, Fengchun

Publisher: UNESCO Publishing

Published: 2021-04-08

Total Pages: 50

ISBN-13: 9231004476

DOWNLOAD EBOOK

Artificial Intelligence (AI) has the potential to address some of the biggest challenges in education today, innovate teaching and learning practices, and ultimately accelerate the progress towards SDG 4. However, these rapid technological developments inevitably bring multiple risks and challenges, which have so far outpaced policy debates and regulatory frameworks. This publication offers guidance for policy-makers on how best to leverage the opportunities and address the risks, presented by the growing connection between AI and education. It starts with the essentials of AI: definitions, techniques and technologies. It continues with a detailed analysis of the emerging trends and implications of AI for teaching and learning, including how we can ensure the ethical, inclusive and equitable use of AI in education, how education can prepare humans to live and work with AI, and how AI can be applied to enhance education. It finally introduces the challenges of harnessing AI to achieve SDG 4 and offers concrete actionable recommendations for policy-makers to plan policies and programmes for local contexts. [Publisher summary, ed]


Computational Intelligence

Computational Intelligence

Author: David I. Poole

Publisher: Oxford University Press on Demand

Published: 1998

Total Pages: 558

ISBN-13: 9780195102703

DOWNLOAD EBOOK

Provides an integrated introduction to artificial intelligence. Develops AI representation schemes and describes their uses for diverse applications, from autonomous robots to diagnostic assistants to infobots. DLC: Artificial intelligence.


Interpretable Machine Learning

Interpretable Machine Learning

Author: Christoph Molnar

Publisher: Lulu.com

Published: 2020

Total Pages: 320

ISBN-13: 0244768528

DOWNLOAD EBOOK

This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.


Artificial Intelligence Driven by Machine Learning and Deep Learning

Artificial Intelligence Driven by Machine Learning and Deep Learning

Author: Bahman Zohuri

Publisher: Nova Science Publishers

Published: 2020

Total Pages: 455

ISBN-13: 9781536183672

DOWNLOAD EBOOK

"The future of any business from banking, e-commerce, real estate, homeland security, healthcare, marketing, the stock market, manufacturing, education, retail to government organizations depends on the data and analytics capabilities that are built and scaled. The speed of change in technology in recent years has been a real challenge for all businesses. To manage that, a significant number of organizations are exploring the BigData (BD) infrastructure that helps them to take advantage of new opportunities while saving costs. Timely transformation of information is also critical for the survivability of an organization. Having the right information at the right time will enhance not only the knowledge of stakeholders within an organization but also providing them with a tool to make the right decision at the right moment. It is no longer enough to rely on a sampling of information about the organizations' customers. The decision-makers need to get vital insights into the customers' actual behavior, which requires enormous volumes of data to be processed. We believe that Big Data infrastructure is the key to successful Artificial Intelligence (AI) deployments and accurate, unbiased real-time insights. Big data solutions have a direct impact and changing the way the organization needs to work with help from AI and its components ML and DL. In this article, we discuss these topics"--


Link

Link

Author: Lorien Pratt

Publisher: Emerald Publishing Limited

Published: 2019-09-16

Total Pages: 0

ISBN-13: 9781787696549

DOWNLOAD EBOOK

Why aren't the most powerful new technologies being used to solve the world's most important problems: hunger, poverty, conflict, employment, disease? In Link, Dr. Lorien Pratt answers these questions by exploring the solution that is emerging worldwide to take Artificial Intelligence to the next level: Decision Intelligence.


Machine Learning and AI for Healthcare

Machine Learning and AI for Healthcare

Author: Arjun Panesar

Publisher: Apress

Published: 2019-02-04

Total Pages: 390

ISBN-13: 1484237994

DOWNLOAD EBOOK

Explore the theory and practical applications of artificial intelligence (AI) and machine learning in healthcare. This book offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare and big data challenges. You’ll discover the ethical implications of healthcare data analytics and the future of AI in population and patient health optimization. You’ll also create a machine learning model, evaluate performance and operationalize its outcomes within your organization. Machine Learning and AI for Healthcare provides techniques on how to apply machine learning within your organization and evaluate the efficacy, suitability, and efficiency of AI applications. These are illustrated through leading case studies, including how chronic disease is being redefined through patient-led data learning and the Internet of Things. What You'll LearnGain a deeper understanding of key machine learning algorithms and their use and implementation within wider healthcare Implement machine learning systems, such as speech recognition and enhanced deep learning/AI Select learning methods/algorithms and tuning for use in healthcare Recognize and prepare for the future of artificial intelligence in healthcare through best practices, feedback loops and intelligent agentsWho This Book Is For Health care professionals interested in how machine learning can be used to develop health intelligence – with the aim of improving patient health, population health and facilitating significant care-payer cost savings.