Arithmetic Functions and Integer Products

Arithmetic Functions and Integer Products

Author: P.D.T.A. Elliott

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 469

ISBN-13: 1461385482

DOWNLOAD EBOOK

Every positive integer m has a product representation of the form where v, k and the ni are positive integers, and each Ei = ± I. A value can be given for v which is uniform in the m. A representation can be computed so that no ni exceeds a certain fixed power of 2m, and the number k of terms needed does not exceed a fixed power of log 2m. Consider next the collection of finite probability spaces whose associated measures assume only rational values. Let hex) be a real-valued function which measures the information in an event, depending only upon the probability x with which that event occurs. Assuming hex) to be non negative, and to satisfy certain standard properties, it must have the form -A(x log x + (I - x) 10g(I -x». Except for a renormalization this is the well-known function of Shannon. What do these results have in common? They both apply the theory of arithmetic functions. The two widest classes of arithmetic functions are the real-valued additive and the complex-valued multiplicative functions. Beginning in the thirties of this century, the work of Erdos, Kac, Kubilius, Turan and others gave a discipline to the study of the general value distribution of arithmetic func tions by the introduction of ideas, methods and results from the theory of Probability. I gave an account of the resulting extensive and still developing branch of Number Theory in volumes 239/240 of this series, under the title Probabilistic Number Theory.


Various Arithmetic Functions and their Applications

Various Arithmetic Functions and their Applications

Author: Octavian Cira

Publisher: Infinite Study

Published: 2016

Total Pages: 402

ISBN-13: 1599733722

DOWNLOAD EBOOK

Over 300 sequences and many unsolved problems and conjectures related to them are presented herein. These notions, definitions, unsolved problems, questions, theorems corollaries, formulae, conjectures, examples, mathematical criteria, etc. on integer sequences, numbers, quotients, residues, exponents, sieves, pseudo-primes squares cubes factorials, almost primes, mobile periodicals, functions, tables, prime square factorial bases, generalized factorials, generalized palindromes, so on, have been extracted from the Archives of American Mathematics (University of Texas at Austin) and Arizona State University (Tempe): "The Florentin Smarandache papers" special collections, and Arhivele Statului (Filiala Vâlcea & Filiala Dolj, Romania). This book was born from the collaboration of the two authors, which started in 2013. The first common work was the volume "Solving Diophantine Equations", published in 2014. The contribution of the authors can be summarized as follows: Florentin Smarandache came with his extraordinary ability to propose new areas of study in number theory, and Octavian Cira - with his algorithmic thinking and knowledge of Mathcad.


An Introduction to the Theory of Numbers

An Introduction to the Theory of Numbers

Author: Leo Moser

Publisher: The Trillia Group

Published: 2004

Total Pages: 95

ISBN-13: 1931705011

DOWNLOAD EBOOK

"This book, which presupposes familiarity only with the most elementary concepts of arithmetic (divisibility properties, greatest common divisor, etc.), is an expanded version of a series of lectures for graduate students on elementary number theory. Topics include: Compositions and Partitions; Arithmetic Functions; Distribution of Primes; Irrational Numbers; Congruences; Diophantine Equations; Combinatorial Number Theory; and Geometry of Numbers. Three sections of problems (which include exercises as well as unsolved problems) complete the text."--Publisher's description


Duality in Analytic Number Theory

Duality in Analytic Number Theory

Author: Peter D. T. A. Elliott

Publisher: Cambridge University Press

Published: 1997-02-13

Total Pages: 362

ISBN-13: 1316582590

DOWNLOAD EBOOK

In this stimulating book, aimed at researchers both established and budding, Peter Elliott demonstrates a method and a motivating philosophy that combine to cohere a large part of analytic number theory, including the hitherto nebulous study of arithmetic functions. Besides its application, the book also illustrates a way of thinking mathematically: historical background is woven into the narrative, variant proofs illustrate obstructions, false steps and the development of insight, in a manner reminiscent of Euler. It is shown how to formulate theorems as well as how to construct their proofs. Elementary notions from functional analysis, Fourier analysis, functional equations and stability in mechanics are controlled by a geometric view and synthesized to provide an arithmetical analogue of classical harmonic analysis that is powerful enough to establish arithmetic propositions until now beyond reach. Connections with other branches of analysis are illustrated by over 250 exercises, structured in chains about individual topics.


The Ultimate Challenge

The Ultimate Challenge

Author: Jeffrey C. Lagarias

Publisher: American Mathematical Society

Published: 2023-04-19

Total Pages: 360

ISBN-13: 1470472899

DOWNLOAD EBOOK

The $3x+1$ problem, or Collatz problem, concerns the following seemingly innocent arithmetic procedure applied to integers: If an integer $x$ is odd then “multiply by three and add one”, while if it is even then “divide by two”. The $3x+1$ problem asks whether, starting from any positive integer, repeating this procedure over and over will eventually reach the number 1. Despite its simple appearance, this problem is unsolved. Generalizations of the problem are known to be undecidable, and the problem itself is believed to be extraordinarily difficult. This book reports on what is known on this problem. It consists of a collection of papers, which can be read independently of each other. The book begins with two introductory papers, one giving an overview and current status, and the second giving history and basic results on the problem. These are followed by three survey papers on the problem, relating it to number theory and dynamical systems, to Markov chains and ergodic theory, and to logic and the theory of computation. The next paper presents results on probabilistic models for behavior of the iteration. This is followed by a paper giving the latest computational results on the problem, which verify its truth for $x < 5.4 cdot 10^{18}$. The book also reprints six early papers on the problem and related questions, by L. Collatz, J. H. Conway, H. S. M. Coxeter, C. J. Everett, and R. K. Guy, each with editorial commentary. The book concludes with an annotated bibliography of work on the problem up to the year 2000.


Introduction to Analytic Number Theory

Introduction to Analytic Number Theory

Author: Tom M. Apostol

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 352

ISBN-13: 1475755791

DOWNLOAD EBOOK

"This book is the first volume of a two-volume textbook for undergraduates and is indeed the crystallization of a course offered by the author at the California Institute of Technology to undergraduates without any previous knowledge of number theory. For this reason, the book starts with the most elementary properties of the natural integers. Nevertheless, the text succeeds in presenting an enormous amount of material in little more than 300 pages."-—MATHEMATICAL REVIEWS


Handbook of Number Theory I

Handbook of Number Theory I

Author: József Sándor

Publisher: Springer Science & Business Media

Published: 2005-11-17

Total Pages: 638

ISBN-13: 1402042159

DOWNLOAD EBOOK

This handbook covers a wealth of topics from number theory, special attention being given to estimates and inequalities. As a rule, the most important results are presented, together with their refinements, extensions or generalisations. These may be applied to other aspects of number theory, or to a wide range of mathematical disciplines. Cross-references provide new insight into fundamental research. Audience: This is an indispensable reference work for specialists in number theory and other mathematicians who need access to some of these results in their own fields of research.


A Tribute to Paul Erdos

A Tribute to Paul Erdos

Author: A. Baker

Publisher: Cambridge University Press

Published: 1990-12-13

Total Pages: 498

ISBN-13: 1316582426

DOWNLOAD EBOOK

This volume is dedicated to Paul Erdos, who profoundly influenced mathematics in the twentieth century, with over 1200 papers in number theory, complex analysis, probability theory, geometry, interpretation theory, algebra set theory and combinatorics. One of Erdos' hallmarks was the host of stimulating problems and conjectures, to many of which he attached monetary prices, in accordance with their notoriety. A feature of this volume is a collection of some 50 outstanding unsolved problems, together with their 'value'! Eminent mathematicians from around the world have contributed articles to this volume that reflect the diversity of Erdos' interests, and it will be a fund of insight for number theorists, combinatorialists, set theorists and analysts.


Combinatorics, Automata and Number Theory

Combinatorics, Automata and Number Theory

Author: Valérie Berthé

Publisher: Cambridge University Press

Published: 2010-08-12

Total Pages: 637

ISBN-13: 1139643185

DOWNLOAD EBOOK

This collaborative volume presents trends arising from the fruitful interaction between the themes of combinatorics on words, automata and formal language theory, and number theory. Presenting several important tools and concepts, the authors also reveal some of the exciting and important relationships that exist between these different fields. Topics include numeration systems, word complexity function, morphic words, Rauzy tilings and substitutive dynamical systems, Bratelli diagrams, frequencies and ergodicity, Diophantine approximation and transcendence, asymptotic properties of digital functions, decidability issues for D0L systems, matrix products and joint spectral radius. Topics are presented in a way that links them to the three main themes, but also extends them to dynamical systems and ergodic theory, fractals, tilings and spectral properties of matrices. Graduate students, research mathematicians and computer scientists working in combinatorics, theory of computation, number theory, symbolic dynamics, fractals, tilings and stringology will find much of interest in this book.