Arithmetic and Geometry Around Hypergeometric Functions

Arithmetic and Geometry Around Hypergeometric Functions

Author: Rolf-Peter Holzapfel

Publisher: Springer Science & Business Media

Published: 2007-06-28

Total Pages: 441

ISBN-13: 3764382848

DOWNLOAD EBOOK

This volume comprises lecture notes, survey and research articles originating from the CIMPA Summer School Arithmetic and Geometry around Hypergeometric Functions held at Galatasaray University, Istanbul, June 13-25, 2005. It covers a wide range of topics related to hypergeometric functions, thus giving a broad perspective of the state of the art in the field.


Arithmetic and Geometry Around Hypergeometric Functions

Arithmetic and Geometry Around Hypergeometric Functions

Author: Rolf-Peter Holzapfel

Publisher: Birkhäuser

Published: 2009-09-03

Total Pages: 437

ISBN-13: 9783764391942

DOWNLOAD EBOOK

This volume comprises lecture notes, survey and research articles originating from the CIMPA Summer School Arithmetic and Geometry around Hypergeometric Functions held at Galatasaray University, Istanbul, June 13-25, 2005. It covers a wide range of topics related to hypergeometric functions, thus giving a broad perspective of the state of the art in the field.


Hypergeometric Functions in Arithmetic Geometry

Hypergeometric Functions in Arithmetic Geometry

Author: Adriana Julia Salerno

Publisher:

Published: 2009

Total Pages: 204

ISBN-13:

DOWNLOAD EBOOK

Hypergeometric functions seem to be ubiquitous in mathematics. In this document, we present a couple of ways in which hypergeometric functions appear in arithmetic geometry. First, we show that the number of points over a finite field [mathematical symbol] on a certain family of hypersurfaces, [mathematical symbol] ([lamda]), is a linear combination of hypergeometric functions. We use results by Koblitz and Gross to find explicit relationships, which could be useful for computing Zeta functions in the future. We then study more geometric aspects of the same families. A construction of Dwork's gives a vector bundle of deRham cohomologies equipped with a connection. This connection gives rise to a differential equation which is known to be hypergeometric. We developed an algorithm which computes the parameters of the hypergeometric equations given the family of hypersurfaces.


Hessian Polyhedra, Invariant Theory And Appell Hypergeometric Functions

Hessian Polyhedra, Invariant Theory And Appell Hypergeometric Functions

Author: Lei Yang

Publisher: World Scientific

Published: 2018-03-13

Total Pages: 317

ISBN-13: 9813209496

DOWNLOAD EBOOK

Our book gives the complex counterpart of Klein's classic book on the icosahedron. We show that the following four apparently disjoint theories: the symmetries of the Hessian polyhedra (geometry), the resolution of some system of algebraic equations (algebra), the system of partial differential equations of Appell hypergeometric functions (analysis) and the modular equation of Picard modular functions (arithmetic) are in fact dominated by the structure of a single object, the Hessian group $mathfrak{G}’_{216}$. It provides another beautiful example on the fundamental unity of mathematics.


Theory of Hypergeometric Functions

Theory of Hypergeometric Functions

Author: Kazuhiko Aomoto

Publisher: Springer Science & Business Media

Published: 2011-05-21

Total Pages: 327

ISBN-13: 4431539387

DOWNLOAD EBOOK

This book presents a geometric theory of complex analytic integrals representing hypergeometric functions of several variables. Starting from an integrand which is a product of powers of polynomials, integrals are explained, in an open affine space, as a pair of twisted de Rham cohomology and its dual over the coefficients of local system. It is shown that hypergeometric integrals generally satisfy a holonomic system of linear differential equations with respect to the coefficients of polynomials and also satisfy a holonomic system of linear difference equations with respect to the exponents. These are deduced from Grothendieck-Deligne’s rational de Rham cohomology on the one hand, and by multidimensional extension of Birkhoff’s classical theory on analytic difference equations on the other.


Arithmetic and Geometry Around Galois Theory

Arithmetic and Geometry Around Galois Theory

Author: Pierre Dèbes

Publisher: Springer Science & Business Media

Published: 2012-12-13

Total Pages: 411

ISBN-13: 3034804873

DOWNLOAD EBOOK

This Lecture Notes volume is the fruit of two research-level summer schools jointly organized by the GTEM node at Lille University and the team of Galatasaray University (Istanbul): "Geometry and Arithmetic of Moduli Spaces of Coverings (2008)" and "Geometry and Arithmetic around Galois Theory (2009)". The volume focuses on geometric methods in Galois theory. The choice of the editors is to provide a complete and comprehensive account of modern points of view on Galois theory and related moduli problems, using stacks, gerbes and groupoids. It contains lecture notes on étale fundamental group and fundamental group scheme, and moduli stacks of curves and covers. Research articles complete the collection.​


Rigid Local Systems. (AM-139), Volume 139

Rigid Local Systems. (AM-139), Volume 139

Author: Nicholas M. Katz

Publisher: Princeton University Press

Published: 2016-03-02

Total Pages: 233

ISBN-13: 1400882591

DOWNLOAD EBOOK

Riemann introduced the concept of a "local system" on P1-{a finite set of points} nearly 140 years ago. His idea was to study nth order linear differential equations by studying the rank n local systems (of local holomorphic solutions) to which they gave rise. His first application was to study the classical Gauss hypergeometric function, which he did by studying rank-two local systems on P1- {0,1,infinity}. His investigation was successful, largely because any such (irreducible) local system is rigid in the sense that it is globally determined as soon as one knows separately each of its local monodromies. It became clear that luck played a role in Riemann's success: most local systems are not rigid. Yet many classical functions are solutions of differential equations whose local systems are rigid, including both of the standard nth order generalizations of the hypergeometric function, n F n-1's, and the Pochhammer hypergeometric functions. This book is devoted to constructing all (irreducible) rigid local systems on P1-{a finite set of points} and recognizing which collections of independently given local monodromies arise as the local monodromies of irreducible rigid local systems. Although the problems addressed here go back to Riemann, and seem to be problems in complex analysis, their solutions depend essentially on a great deal of very recent arithmetic algebraic geometry, including Grothendieck's etale cohomology theory, Deligne's proof of his far-reaching generalization of the original Weil Conjectures, the theory of perverse sheaves, and Laumon's work on the l-adic Fourier Transform.


Rigid Local Systems

Rigid Local Systems

Author: Nicholas M. Katz

Publisher: Princeton University Press

Published: 1996

Total Pages: 236

ISBN-13: 9780691011189

DOWNLOAD EBOOK

Riemann introduced the concept of a "local system" on P1-{a finite set of points} nearly 140 years ago. His idea was to study nth order linear differential equations by studying the rank n local systems (of local holomorphic solutions) to which they gave rise. His first application was to study the classical Gauss hypergeometric function, which he did by studying rank-two local systems on P1- {0,1,infinity}. His investigation was successful, largely because any such (irreducible) local system is rigid in the sense that it is globally determined as soon as one knows separately each of its local monodromies. It became clear that luck played a role in Riemann's success: most local systems are not rigid. Yet many classical functions are solutions of differential equations whose local systems are rigid, including both of the standard nth order generalizations of the hypergeometric function, n F n-1's, and the Pochhammer hypergeometric functions. This book is devoted to constructing all (irreducible) rigid local systems on P1-{a finite set of points} and recognizing which collections of independently given local monodromies arise as the local monodromies of irreducible rigid local systems. Although the problems addressed here go back to Riemann, and seem to be problems in complex analysis, their solutions depend essentially on a great deal of very recent arithmetic algebraic geometry, including Grothendieck's etale cohomology theory, Deligne's proof of his far-reaching generalization of the original Weil Conjectures, the theory of perverse sheaves, and Laumon's work on the l-adic Fourier Transform.