Approximation Theory and Methods

Approximation Theory and Methods

Author: M. J. D. Powell

Publisher: Cambridge University Press

Published: 1981-03-31

Total Pages: 356

ISBN-13: 9780521295147

DOWNLOAD EBOOK

Most functions that occur in mathematics cannot be used directly in computer calculations. Instead they are approximated by manageable functions such as polynomials and piecewise polynomials. The general theory of the subject and its application to polynomial approximation are classical, but piecewise polynomials have become far more useful during the last twenty years. Thus many important theoretical properties have been found recently and many new techniques for the automatic calculation of approximations to prescribed accuracy have been developed. This book gives a thorough and coherent introduction to the theory that is the basis of current approximation methods. Professor Powell describes and analyses the main techniques of calculation supplying sufficient motivation throughout the book to make it accessible to scientists and engineers who require approximation methods for practical needs. Because the book is based on a course of lectures to third-year undergraduates in mathematics at Cambridge University, sufficient attention is given to theory to make it highly suitable as a mathematical textbook at undergraduate or postgraduate level.


Approximation Theory and Methods

Approximation Theory and Methods

Author: M. J. D. Powell

Publisher: Cambridge University Press

Published: 1981-03-31

Total Pages: 352

ISBN-13: 9780521224727

DOWNLOAD EBOOK

Most functions that occur in mathematics cannot be used directly in computer calculations. Instead they are approximated by manageable functions such as polynomials and piecewise polynomials. The general theory of the subject and its application to polynomial approximation are classical, but piecewise polynomials have become far more useful during the last twenty years. Thus many important theoretical properties have been found recently and many new techniques for the automatic calculation of approximations to prescribed accuracy have been developed. This book gives a thorough and coherent introduction to the theory that is the basis of current approximation methods. Professor Powell describes and analyses the main techniques of calculation supplying sufficient motivation throughout the book to make it accessible to scientists and engineers who require approximation methods for practical needs. Because the book is based on a course of lectures to third-year undergraduates in mathematics at Cambridge University, sufficient attention is given to theory to make it highly suitable as a mathematical textbook at undergraduate or postgraduate level.


Approximation Theory and Algorithms for Data Analysis

Approximation Theory and Algorithms for Data Analysis

Author: Armin Iske

Publisher: Springer

Published: 2018-12-14

Total Pages: 363

ISBN-13: 3030052281

DOWNLOAD EBOOK

This textbook offers an accessible introduction to the theory and numerics of approximation methods, combining classical topics of approximation with recent advances in mathematical signal processing, and adopting a constructive approach, in which the development of numerical algorithms for data analysis plays an important role. The following topics are covered: * least-squares approximation and regularization methods * interpolation by algebraic and trigonometric polynomials * basic results on best approximations * Euclidean approximation * Chebyshev approximation * asymptotic concepts: error estimates and convergence rates * signal approximation by Fourier and wavelet methods * kernel-based multivariate approximation * approximation methods in computerized tomography Providing numerous supporting examples, graphical illustrations, and carefully selected exercises, this textbook is suitable for introductory courses, seminars, and distance learning programs on approximation for undergraduate students.


Methods of Approximation Theory in Complex Analysis and Mathematical Physics

Methods of Approximation Theory in Complex Analysis and Mathematical Physics

Author: Andrei A. Gonchar

Publisher: Springer

Published: 2008-01-03

Total Pages: 225

ISBN-13: 3540477926

DOWNLOAD EBOOK

The book incorporates research papers and surveys written by participants ofan International Scientific Programme on Approximation Theory jointly supervised by Institute for Constructive Mathematics of University of South Florida at Tampa, USA and the Euler International Mathematical Instituteat St. Petersburg, Russia. The aim of the Programme was to present new developments in Constructive Approximation Theory. The topics of the papers are: asymptotic behaviour of orthogonal polynomials, rational approximation of classical functions, quadrature formulas, theory of n-widths, nonlinear approximation in Hardy algebras,numerical results on best polynomial approximations, wavelet analysis. FROM THE CONTENTS: E.A. Rakhmanov: Strong asymptotics for orthogonal polynomials associated with exponential weights on R.- A.L. Levin, E.B. Saff: Exact Convergence Rates for Best Lp Rational Approximation to the Signum Function and for Optimal Quadrature in Hp.- H. Stahl: Uniform Rational Approximation of x .- M. Rahman, S.K. Suslov: Classical Biorthogonal Rational Functions.- V.P. Havin, A. Presa Sague: Approximation properties of harmonic vector fields and differential forms.- O.G. Parfenov: Extremal problems for Blaschke products and N-widths.- A.J. Carpenter, R.S. Varga: Some Numerical Results on Best Uniform Polynomial Approximation of x on 0,1 .- J.S. Geronimo: Polynomials Orthogonal on the Unit Circle with Random Recurrence Coefficients.- S. Khrushchev: Parameters of orthogonal polynomials.- V.N. Temlyakov: The universality of the Fibonacci cubature formulas.


Approximation Theory and Approximation Practice, Extended Edition

Approximation Theory and Approximation Practice, Extended Edition

Author: Lloyd N. Trefethen

Publisher: SIAM

Published: 2019-01-01

Total Pages: 377

ISBN-13: 1611975948

DOWNLOAD EBOOK

This is a textbook on classical polynomial and rational approximation theory for the twenty-first century. Aimed at advanced undergraduates and graduate students across all of applied mathematics, it uses MATLAB to teach the fieldÂ’s most important ideas and results. Approximation Theory and Approximation Practice, Extended Edition differs fundamentally from other works on approximation theory in a number of ways: its emphasis is on topics close to numerical algorithms; concepts are illustrated with Chebfun; and each chapter is a PUBLISHable MATLAB M-file, available online. The book centers on theorems and methods for analytic functions, which appear so often in applications, rather than on functions at the edge of discontinuity with their seductive theoretical challenges. Original sources are cited rather than textbooks, and each item in the bibliography is accompanied by an editorial comment. In addition, each chapter has a collection of exercises, which span a wide range from mathematical theory to Chebfun-based numerical experimentation. This textbook is appropriate for advanced undergraduate or graduate students who have an understanding of numerical analysis and complex analysis. It is also appropriate for seasoned mathematicians who use MATLAB.


Spectral Theory of Approximation Methods for Convolution Equations

Spectral Theory of Approximation Methods for Convolution Equations

Author: Roland Hagen

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 388

ISBN-13: 3034890672

DOWNLOAD EBOOK

The aim of the present book is to propose a new algebraic approach to the study of norm stability of operator sequences which arise, for example, via discretization of singular integral equations on composed curves. A wide variety of discretization methods, including quadrature rules and spline or wavelet approximations, is covered and studied from a unique point of view. The approach takes advantage of the fruitful interplay between approximation theory, concrete operator theory, and local Banach algebra techniques. The book is addressed to a wide audience, in particular to mathematicians working in operator theory and Banach algebras as well as to applied mathematicians and engineers interested in theoretical foundations of various methods in general use, particularly splines and wavelets. The exposition contains numerous examples and exercises. Students will find a large number of suggestions for their own investigations.


Approximation Theory

Approximation Theory

Author: George A. Anastassiou

Publisher: Springer Science & Business Media

Published: 1999-12-22

Total Pages: 554

ISBN-13: 9780817641511

DOWNLOAD EBOOK

We study in Part I of this monograph the computational aspect of almost all moduli of continuity over wide classes of functions exploiting some of their convexity properties. To our knowledge it is the first time the entire calculus of moduli of smoothness has been included in a book. We then present numerous applications of Approximation Theory, giving exact val ues of errors in explicit forms. The K-functional method is systematically avoided since it produces nonexplicit constants. All other related books so far have allocated very little space to the computational aspect of moduli of smoothness. In Part II, we study/examine the Global Smoothness Preservation Prop erty (GSPP) for almost all known linear approximation operators of ap proximation theory including: trigonometric operators and algebraic in terpolation operators of Lagrange, Hermite-Fejer and Shepard type, also operators of stochastic type, convolution type, wavelet type integral opera tors and singular integral operators, etc. We present also a sufficient general theory for GSPP to hold true. We provide a great variety of applications of GSPP to Approximation Theory and many other fields of mathemat ics such as Functional analysis, and outside of mathematics, fields such as computer-aided geometric design (CAGD). Most of the time GSPP meth ods are optimal. Various moduli of smoothness are intensively involved in Part II. Therefore, methods from Part I can be used to calculate exactly the error of global smoothness preservation. It is the first time in the literature that a book has studied GSPP.