Approximation Methods in Science and Engineering

Approximation Methods in Science and Engineering

Author: Reza N. Jazar

Publisher:

Published: 2020

Total Pages:

ISBN-13: 9781071604793

DOWNLOAD EBOOK

Approximation Methods in Engineering and Science covers fundamental and advanced topics in three areas: Dimensional Analysis, Continued Fractions, and Stability Analysis of the Mathieu Differential Equation. Throughout the book, a strong emphasis is given to concepts and methods used in everyday calculations. Dimensional analysis is a crucial need for every engineer and scientist to be able to do experiments on scaled models and use the results in real world applications. Knowing that most nonlinear equations have no analytic solution, the power series solution is assumed to be the first approach to derive an approximate solution. However, this book will show the advantages of continued fractions and provides a systematic method to develop better approximate solutions in continued fractions. It also shows the importance of determining stability chart of the Mathieu equation and reviews and compares several approximate methods for that. The book provides the energy-rate method to study the stability of parametric differential equations that generates much better approximate solutions. Covers practical model-prototype analysis and nondimensionalization of differential equations; Coverage includes approximate methods of responses of nonlinear differential equations; Discusses how to apply approximation methods to analysis, design, optimization, and control problems; Discusses how to implement approximation methods to new aspects of engineering and physics including nonlinear vibration and vehicle dynamics


Approximation Methods in Science and Engineering

Approximation Methods in Science and Engineering

Author: Reza N. Jazar

Publisher: Springer Nature

Published: 2020-03-13

Total Pages: 544

ISBN-13: 1071604805

DOWNLOAD EBOOK

Approximation Methods in Engineering and Science covers fundamental and advanced topics in three areas: Dimensional Analysis, Continued Fractions, and Stability Analysis of the Mathieu Differential Equation. Throughout the book, a strong emphasis is given to concepts and methods used in everyday calculations. Dimensional analysis is a crucial need for every engineer and scientist to be able to do experiments on scaled models and use the results in real world applications. Knowing that most nonlinear equations have no analytic solution, the power series solution is assumed to be the first approach to derive an approximate solution. However, this book will show the advantages of continued fractions and provides a systematic method to develop better approximate solutions in continued fractions. It also shows the importance of determining stability chart of the Mathieu equation and reviews and compares several approximate methods for that. The book provides the energy-rate method to study the stability of parametric differential equations that generates much better approximate solutions.


Numerical Methods and Methods of Approximation in Science and Engineering

Numerical Methods and Methods of Approximation in Science and Engineering

Author: Karan S. Surana

Publisher: CRC Press

Published: 2018-10-31

Total Pages: 426

ISBN-13: 0429647867

DOWNLOAD EBOOK

Numerical Methods and Methods of Approximation in Science and Engineering prepares students and other readers for advanced studies involving applied numerical and computational analysis. Focused on building a sound theoretical foundation, it uses a clear and simple approach backed by numerous worked examples to facilitate understanding of numerical methods and their application. Readers will learn to structure a sequence of operations into a program, using the programming language of their choice; this approach leads to a deeper understanding of the methods and their limitations. Features: Provides a strong theoretical foundation for learning and applying numerical methods Takes a generic approach to engineering analysis, rather than using a specific programming language Built around a consistent, understandable model for conducting engineering analysis Prepares students for advanced coursework, and use of tools such as FEA and CFD Presents numerous detailed examples and problems, and a Solutions Manual for instructors


Perturbation Methods in Science and Engineering

Perturbation Methods in Science and Engineering

Author: Reza N. Jazar

Publisher: Springer Nature

Published: 2021-07-12

Total Pages: 584

ISBN-13: 3030734625

DOWNLOAD EBOOK

Perturbation Methods in Science and Engineering provides the fundamental and advanced topics in perturbation methods in science and engineering, from an application viewpoint. This book bridges the gap between theory and applications, in new as well as classical problems. The engineers and graduate students who read this book will be able to apply their knowledge to a wide range of applications in different engineering disciplines. The book begins with a clear description on limits of mathematics in providing exact solutions and goes on to show how pioneers attempted to search for approximate solutions of unsolvable problems. Through examination of special applications and highlighting many different aspects of science, this text provides an excellent insight into perturbation methods without restricting itself to a particular method. This book is ideal for graduate students in engineering, mathematics, and physical sciences, as well as researchers in dynamic systems.


Numerical Approximation Methods

Numerical Approximation Methods

Author: Harold Cohen

Publisher: Springer Science & Business Media

Published: 2011-09-28

Total Pages: 493

ISBN-13: 1441998365

DOWNLOAD EBOOK

This book presents numerical and other approximation techniques for solving various types of mathematical problems that cannot be solved analytically. In addition to well known methods, it contains some non-standard approximation techniques that are now formally collected as well as original methods developed by the author that do not appear in the literature. This book contains an extensive treatment of approximate solutions to various types of integral equations, a topic that is not often discussed in detail. There are detailed analyses of ordinary and partial differential equations and descriptions of methods for estimating the values of integrals that are presented in a level of detail that will suggest techniques that will be useful for developing methods for approximating solutions to problems outside of this text. The book is intended for researchers who must approximate solutions to problems that cannot be solved analytically. It is also appropriate for students taking courses in numerical approximation techniques.


Advanced Mathematical Methods for Scientists and Engineers I

Advanced Mathematical Methods for Scientists and Engineers I

Author: Carl M. Bender

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 605

ISBN-13: 1475730691

DOWNLOAD EBOOK

A clear, practical and self-contained presentation of the methods of asymptotics and perturbation theory for obtaining approximate analytical solutions to differential and difference equations. Aimed at teaching the most useful insights in approaching new problems, the text avoids special methods and tricks that only work for particular problems. Intended for graduates and advanced undergraduates, it assumes only a limited familiarity with differential equations and complex variables. The presentation begins with a review of differential and difference equations, then develops local asymptotic methods for such equations, and explains perturbation and summation theory before concluding with an exposition of global asymptotic methods. Emphasizing applications, the discussion stresses care rather than rigor and relies on many well-chosen examples to teach readers how an applied mathematician tackles problems. There are 190 computer-generated plots and tables comparing approximate and exact solutions, over 600 problems of varying levels of difficulty, and an appendix summarizing the properties of special functions.


Meshfree Approximation Methods with MATLAB

Meshfree Approximation Methods with MATLAB

Author: Gregory E. Fasshauer

Publisher: World Scientific

Published: 2007

Total Pages: 520

ISBN-13: 981270633X

DOWNLOAD EBOOK

Meshfree approximation methods are a relatively new area of research. This book provides the salient theoretical results needed for a basic understanding of meshfree approximation methods. It places emphasis on a hands-on approach that includes MATLAB routines for all basic operations.


Approximation Techniques for Engineers

Approximation Techniques for Engineers

Author: Louis Komzsik

Publisher: CRC Press

Published: 2017-04-14

Total Pages: 387

ISBN-13: 1351792725

DOWNLOAD EBOOK

This second edition includes eleven new sections based on the approximation of matrix functions, deflating the solution space and improving the accuracy of approximate solutions, iterative solution of initial value problems of systems of ordinary differential equations, and the method of trial functions for boundary value problems. The topics of th


Matrix, Numerical, and Optimization Methods in Science and Engineering

Matrix, Numerical, and Optimization Methods in Science and Engineering

Author: Kevin W. Cassel

Publisher: Cambridge University Press

Published: 2021-03-04

Total Pages: 728

ISBN-13: 1108787622

DOWNLOAD EBOOK

Address vector and matrix methods necessary in numerical methods and optimization of linear systems in engineering with this unified text. Treats the mathematical models that describe and predict the evolution of our processes and systems, and the numerical methods required to obtain approximate solutions. Explores the dynamical systems theory used to describe and characterize system behaviour, alongside the techniques used to optimize their performance. Integrates and unifies matrix and eigenfunction methods with their applications in numerical and optimization methods. Consolidating, generalizing, and unifying these topics into a single coherent subject, this practical resource is suitable for advanced undergraduate students and graduate students in engineering, physical sciences, and applied mathematics.


Model Reduction and Approximation

Model Reduction and Approximation

Author: Peter Benner

Publisher: SIAM

Published: 2017-07-06

Total Pages: 421

ISBN-13: 1611974828

DOWNLOAD EBOOK

Many physical, chemical, biomedical, and technical processes can be described by partial differential equations or dynamical systems. In spite of increasing computational capacities, many problems are of such high complexity that they are solvable only with severe simplifications, and the design of efficient numerical schemes remains a central research challenge. This book presents a tutorial introduction to recent developments in mathematical methods for model reduction and approximation of complex systems. Model Reduction and Approximation: Theory and Algorithms contains three parts that cover (I) sampling-based methods, such as the reduced basis method and proper orthogonal decomposition, (II) approximation of high-dimensional problems by low-rank tensor techniques, and (III) system-theoretic methods, such as balanced truncation, interpolatory methods, and the Loewner framework. It is tutorial in nature, giving an accessible introduction to state-of-the-art model reduction and approximation methods. It also covers a wide range of methods drawn from typically distinct communities (sampling based, tensor based, system-theoretic).?? This book is intended for researchers interested in model reduction and approximation, particularly graduate students and young researchers.