Jointly sponsored by the European Society for Therapeutic Radiology and Oncology, International Atomic Energy Agency, International Labour Office, International Organization for Medical Physics, Pan American Health Organization and World Health Organization
This publication provides guidance for designing and implementing radiotherapy programmes, taking into account clinical, medical physics, radiation protection and safety aspects. It reflects current requirements for radiotherapy infrastructure in settings with limited resources. It will be of use to professionals involved in the development, implementation and management of radiotherapy programmes
This Safety Guide provides recommendations and guidance on fulfilling the requirements of IAEA Safety Standards Series No. GSR Part 3 for ensuring radiation protection and safety of radiation sources in medical uses of ionizing radiation with regard to patients, workers, carers and comforters, volunteers in biomedical research, and the public. It covers radiological procedures in diagnostic radiology (including dentistry), image guided interventional procedures, nuclear medicine, and radiotherapy. Recommendations and guidance are provided on applying a systematic approach to ensure that there is a balance between being able to utilize the benefits from medical uses of ionizing radiation and minimizing the risk of radiation effects to people.
The proposed book aims to explain the basic principles, concepts and regulations behind radiation protection and their application in the field of radiation oncology practice. This book will be useful to all those students, teachers and practicing professionals involved in the field of radiation oncology.
This publication is the new edition of the International Basic Safety Standards. The edition is co-sponsored by seven other international organizations European Commission (EC/Euratom), FAO, ILO, OECD/NEA, PAHO, UNEP and WHO. It replaces the interim edition that was published in November 2011 and the previous edition of the International Basic Safety Standards which was published in 1996. It has been extensively revised and updated to take account of the latest finding of the United Nations Scientific Committee on the Effects of Atomic Radiation, and the latest recommendations of the International Commission on Radiological Protection. The publication details the requirements for the protection of people and the environment from harmful effects of ionizing radiation and for the safety of radiation sources. All circumstances of radiation exposure are considered.
Does radiation medicine need more regulation or simply better-coordinated regulation? This book addresses this and other questions of critical importance to public health and safety. The issues involved are high on the nation's agenda: the impact of radiation on public safety, the balance between federal and state authority, and the cost-benefit ratio of regulation. Although incidents of misadministration are rare, a case in Pennsylvania resulting in the death of a patient and the inadvertent exposure of others to a high dose of radiation drew attention to issues concerning the regulation of ionizing radiation in medicine and the need to examine current regulatory practices. Written at the request from the Nuclear Regulatory Commission (NRC), Radiation in Medicine reviews the regulation of ionizing radiation in medicine, focusing on the NRC's Medical Use Program, which governs the use of reactor-generated byproduct materials. The committee recommends immediate action on enforcement and provides longer term proposals for reform of the regulatory system. The volume covers: Sources of radiation and their use in medicine. Levels of risk to patients, workers, and the public. Current roles of the Nuclear Regulatory Commission, other federal agencies, and states. Criticisms from the regulated community. The committee explores alternative regulatory structures for radiation medicine and explains the rationale for the option it recommends in this volume. Based on extensive research, input from the regulated community, and the collaborative efforts of experts from a range of disciplines, Radiation in Medicine will be an important resource for federal and state policymakers and regulators, health professionals involved in radiation treatment, developers and producers of radiation equipment, insurance providers, and concerned laypersons.
This book discusses important fundamentals of radiation safety with specific details on dose units, calculations, measuring, and biological effects of ionizing radiation. The author covers different exposure situations and their requirements, and relevant legislation and regulations governing radiation safety. The book also examines radioactive waste management, the transport of radioactive materials, emergency planning and preparedness and various examples of radiation protection programs for industrial, medical, and academic applications.
Radiotherapy requires competent professional staff to ensure safe and effective patient treatment and management. There is a need to provide guidelines that recommend appropriate staffing levels to support the initiation of new services as well as the expansion or upgrade of existing services. Even simple upgrades, or replacement of existing equipment, may have a significant impact on staffing needs. Similarly, the introduction of education and training programmes will require staffing adjustments. A calculation algorithm has been developed to predict staffing levels based on the inputs that are known or can be easily estimated. This publication complements other IAEA publications used to support the initiation of basic radiation medicine services including Setting up a Radiotherapy Programme: Clinical, Medical Physics, Radiation Protection and Safety Aspects, published in 2008.