"This book is a highly recommendable survey of mathematical tools and results in applied probability with special emphasis on queueing theory....The second edition at hand is a thoroughly updated and considerably expended version of the first edition.... This book and the way the various topics are balanced are a welcome addition to the literature. It is an indispensable source of information for both advanced graduate students and researchers." --MATHEMATICAL REVIEWS
"This book is a highly recommendable survey of mathematical tools and results in applied probability with special emphasis on queueing theory....The second edition at hand is a thoroughly updated and considerably expended version of the first edition.... This book and the way the various topics are balanced are a welcome addition to the literature. It is an indispensable source of information for both advanced graduate students and researchers." --MATHEMATICAL REVIEWS
Queues and stochastic networks are analyzed in this book with purely probabilistic methods. The purpose of these lectures is to show that general results from Markov processes, martingales or ergodic theory can be used directly to study the corresponding stochastic processes. Recent developments have shown that, instead of having ad-hoc methods, a better understanding of fundamental results on stochastic processes is crucial to study the complex behavior of stochastic networks. In this book, various aspects of these stochastic models are investigated in depth in an elementary way: Existence of equilibrium, characterization of stationary regimes, transient behaviors (rare events, hitting times) and critical regimes, etc. A simple presentation of stationary point processes and Palm measures is given. Scaling methods and functional limit theorems are a major theme of this book. In particular, a complete chapter is devoted to fluid limits of Markov processes.
This book is based on a course I have taught at Cornell University since 1965. The primary topic of this course was queueing theory, but related topics such as inventories, insurance risk, and dams were also included. As a text I used my earlier book, Queues and Inventories (John Wiley, New York, 1965). Over the years the emphasis in this course shifted from detailed analysis of probability models to the study of stochastic processes that arise from them, and the subtitle of the text, "A Study of Their Basic Stochastic Processes," became a more appropriate description of the course. My own research into the fluctuation theory for U:vy processes provided a new perspective on the topics discussed, and enabled me to reorganize the material. The lecture notes used for the course went through several versions, and the final version became this book. A detailed description of my approach will be found in the Introduction. I have not attempted to give credit to authors of individual results. Readers interested in the historical literature should consult the Selected Bibliography given at the end of the Introduction. The original work in this area is presented here with simpler proofs that make full use of the special features of the underlying stochastic processes. The same approach makes it possible to provide several new results. Thanks are due to Kathy King for her excellent typing of the manuscript.
In this book, Feldman and Valdez-Flores present applied probability and stochastic processes in an elementary but mathematically precise manner, with numerous examples and exercises to illustrate the range of engineering and science applications for the concepts. The book is designed to give the reader an intuitive understanding of probabilistic reasoning, in addition to an understanding of mathematical concepts and principles. Unique features of the book include a self-contained chapter on simulation (Chapter 3) and early introduction of Markov chains.
This accessible book aims to collect in a single volume the essentials of stochastic networks. Stochastic networks have become widely used as a basic model of many physical systems in a diverse range of fields. Written by leading authors in the field, this book is meant to be used as a reference or supplementary reading by practitioners in operations research, computer systems, communications networks, production planning, and logistics.
This book is an introductionary course in stochastic ordering and dependence in the field of applied probability for readers with some background in mathematics. It is based on lectures and senlinars I have been giving for students at Mathematical Institute of Wroclaw University, and on a graduate course a.t Industrial Engineering Department of Texas A&M University, College Station, and addressed to a reader willing to use for example Lebesgue measure, conditional expectations with respect to sigma fields, martingales, or compensators as a common language in this field. In Chapter 1 a selection of one dimensional orderings is presented together with applications in the theory of queues, some parts of this selection are based on the recent literature (not older than five years). In Chapter 2 the material is centered around the strong stochastic ordering in many dimen sional spaces and functional spaces. Necessary facts about conditioning, Markov processes an"d point processes are introduced together with some classical results such as the product formula and Poissonian departure theorem for Jackson networks, or monotonicity results for some re newal processes, then results on stochastic ordering of networks, re~~ment policies and single server queues connected with Markov renewal processes are given. Chapter 3 is devoted to dependence and relations between dependence and ordering, exem plified by results on queueing networks and point processes among others.
This book introduces the theoretical fundamentals for modeling queues in discrete-time, and the basic procedures for developing queuing models in discrete-time. There is a focus on applications in modern telecommunication systems. It presents how most queueing models in discrete-time can be set up as discrete-time Markov chains. Techniques such as matrix-analytic methods (MAM) that can used to analyze the resulting Markov chains are included. This book covers single node systems, tandem system and queueing networks. It shows how queues with time-varying parameters can be analyzed, and illustrates numerical issues associated with computations for the discrete-time queueing systems. Optimal control of queues is also covered. Applied Discrete-Time Queues targets researchers, advanced-level students and analysts in the field of telecommunication networks. It is suitable as a reference book and can also be used as a secondary text book in computer engineering and computer science. Examples and exercises are included.
The definitive guide to queueing theory and its practical applications—features numerous real-world examples of scientific, engineering, and business applications Thoroughly updated and expanded to reflect the latest developments in the field, Fundamentals of Queueing Theory, Fifth Edition presents the statistical principles and processes involved in the analysis of the probabilistic nature of queues. Rather than focus narrowly on a particular application area, the authors illustrate the theory in practice across a range of fields, from computer science and various engineering disciplines to business and operations research. Critically, the text also provides a numerical approach to understanding and making estimations with queueing theory and provides comprehensive coverage of both simple and advanced queueing models. As with all preceding editions, this latest update of the classic text features a unique blend of the theoretical and timely real-world applications. The introductory section has been reorganized with expanded coverage of qualitative/non-mathematical approaches to queueing theory, including a high-level description of queues in everyday life. New sections on non-stationary fluid queues, fairness in queueing, and Little’s Law have been added, as has expanded coverage of stochastic processes, including the Poisson process and Markov chains. • Each chapter provides a self-contained presentation of key concepts and formulas, to allow readers to focus independently on topics relevant to their interests • A summary table at the end of the book outlines the queues that have been discussed and the types of results that have been obtained for each queue • Examples from a range of disciplines highlight practical issues often encountered when applying the theory to real-world problems • A companion website features QtsPlus, an Excel-based software platform that provides computer-based solutions for most queueing models presented in the book. Featuring chapter-end exercises and problems—all of which have been classroom-tested and refined by the authors in advanced undergraduate and graduate-level courses—Fundamentals of Queueing Theory, Fifth Edition is an ideal textbook for courses in applied mathematics, queueing theory, probability and statistics, and stochastic processes. This book is also a valuable reference for practitioners in applied mathematics, operations research, engineering, and industrial engineering.
An accessible introduction to probability, stochastic processes, and statistics for computer science and engineering applications Second edition now also available in Paperback. This updated and revised edition of the popular classic first edition relates fundamental concepts in probability and statistics to the computer sciences and engineering. The author uses Markov chains and other statistical tools to illustrate processes in reliability of computer systems and networks, fault tolerance, and performance. This edition features an entirely new section on stochastic Petri nets—as well as new sections on system availability modeling, wireless system modeling, numerical solution techniques for Markov chains, and software reliability modeling, among other subjects. Extensive revisions take new developments in solution techniques and applications into account and bring this work totally up to date. It includes more than 200 worked examples and self-study exercises for each section. Probability and Statistics with Reliability, Queuing and Computer Science Applications, Second Edition offers a comprehensive introduction to probability, stochastic processes, and statistics for students of computer science, electrical and computer engineering, and applied mathematics. Its wealth of practical examples and up-to-date information makes it an excellent resource for practitioners as well. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.