Applied Nonparametric Econometrics

Applied Nonparametric Econometrics

Author: Daniel J. Henderson

Publisher: Cambridge University Press

Published: 2015-01-19

Total Pages: 381

ISBN-13: 110701025X

DOWNLOAD EBOOK

The majority of empirical research in economics ignores the potential benefits of nonparametric methods, while the majority of advances in nonparametric theory ignores the problems faced in applied econometrics. This book helps bridge this gap between applied economists and theoretical nonparametric econometricians. It discusses in depth, and in terms that someone with only one year of graduate econometrics can understand, basic to advanced nonparametric methods. The analysis starts with density estimation and motivates the procedures through methods that should be familiar to the reader. It then moves on to kernel regression, estimation with discrete data, and advanced methods such as estimation with panel data and instrumental variables models. The book pays close attention to the issues that arise with programming, computing speed, and application. In each chapter, the methods discussed are applied to actual data, paying attention to presentation of results and potential pitfalls.


Nonparametric Econometrics

Nonparametric Econometrics

Author: Qi Li

Publisher: Princeton University Press

Published: 2011-10-09

Total Pages: 769

ISBN-13: 1400841062

DOWNLOAD EBOOK

A comprehensive, up-to-date textbook on nonparametric methods for students and researchers Until now, students and researchers in nonparametric and semiparametric statistics and econometrics have had to turn to the latest journal articles to keep pace with these emerging methods of economic analysis. Nonparametric Econometrics fills a major gap by gathering together the most up-to-date theory and techniques and presenting them in a remarkably straightforward and accessible format. The empirical tests, data, and exercises included in this textbook help make it the ideal introduction for graduate students and an indispensable resource for researchers. Nonparametric and semiparametric methods have attracted a great deal of attention from statisticians in recent decades. While the majority of existing books on the subject operate from the presumption that the underlying data is strictly continuous in nature, more often than not social scientists deal with categorical data—nominal and ordinal—in applied settings. The conventional nonparametric approach to dealing with the presence of discrete variables is acknowledged to be unsatisfactory. This book is tailored to the needs of applied econometricians and social scientists. Qi Li and Jeffrey Racine emphasize nonparametric techniques suited to the rich array of data types—continuous, nominal, and ordinal—within one coherent framework. They also emphasize the properties of nonparametric estimators in the presence of potentially irrelevant variables. Nonparametric Econometrics covers all the material necessary to understand and apply nonparametric methods for real-world problems.


Applied Nonparametric Regression

Applied Nonparametric Regression

Author: Wolfgang Härdle

Publisher: Cambridge University Press

Published: 1990

Total Pages: 356

ISBN-13: 9780521429504

DOWNLOAD EBOOK

This is the first book to bring together in one place the techniques for regression curve smoothing involving more than one variable.


The Oxford Handbook of Applied Nonparametric and Semiparametric Econometrics and Statistics

The Oxford Handbook of Applied Nonparametric and Semiparametric Econometrics and Statistics

Author: Jeffrey Racine

Publisher: Oxford University Press

Published: 2014-04

Total Pages: 562

ISBN-13: 0199857946

DOWNLOAD EBOOK

This volume, edited by Jeffrey Racine, Liangjun Su, and Aman Ullah, contains the latest research on nonparametric and semiparametric econometrics and statistics. Chapters by leading international econometricians and statisticians highlight the interface between econometrics and statistical methods for nonparametric and semiparametric procedures.


Nonparametric Econometrics

Nonparametric Econometrics

Author: Jeffrey Scott Racine

Publisher: Now Publishers Inc

Published: 2008

Total Pages: 103

ISBN-13: 1601981104

DOWNLOAD EBOOK

Nonparametric Econometrics is a primer for those who wish to familiarize themselves with nonparametric econometrics. While the underlying theory for many of these methods can be daunting for practitioners, this monograph presents a range of nonparametric methods that can be deployed in a fairly straightforward manner. Nonparametric methods are statistical techniques that do not require a researcher to specify functional forms for objects being estimated. The methods surveyed are known as kernel methods, which are becoming increasingly popular for applied data analysis. The appeal of nonparametric methods stems from the fact that they relax the parametric assumptions imposed on the data generating process and let the data determine an appropriate model. Nonparametric Econometrics focuses on a set of touchstone topics while making liberal use of examples for illustrative purposes. The author provides settings in which the user may wish to model a dataset comprised of continuous, discrete, or categorical data (nominal or ordinal), or any combination thereof. Recent developments are considered, including some where the variables involved may in fact be irrelevant, which alters the behavior of the estimators and optimal bandwidths in a manner that deviates substantially from conventional approaches.


An Introduction to the Advanced Theory and Practice of Nonparametric Econometrics

An Introduction to the Advanced Theory and Practice of Nonparametric Econometrics

Author: Jeffrey S. Racine

Publisher: Cambridge University Press

Published: 2019-06-27

Total Pages: 436

ISBN-13: 1108757286

DOWNLOAD EBOOK

Interest in nonparametric methodology has grown considerably over the past few decades, stemming in part from vast improvements in computer hardware and the availability of new software that allows practitioners to take full advantage of these numerically intensive methods. This book is written for advanced undergraduate students, intermediate graduate students, and faculty, and provides a complete teaching and learning course at a more accessible level of theoretical rigor than Racine's earlier book co-authored with Qi Li, Nonparametric Econometrics: Theory and Practice (2007). The open source R platform for statistical computing and graphics is used throughout in conjunction with the R package np. Recent developments in reproducible research is emphasized throughout with appendices devoted to helping the reader get up to speed with R, R Markdown, TeX and Git.


Semiparametric Regression for the Applied Econometrician

Semiparametric Regression for the Applied Econometrician

Author: Adonis Yatchew

Publisher: Cambridge University Press

Published: 2003-06-02

Total Pages: 238

ISBN-13: 9780521012263

DOWNLOAD EBOOK

This book provides an accessible collection of techniques for analyzing nonparametric and semiparametric regression models. Worked examples include estimation of Engel curves and equivalence scales, scale economies, semiparametric Cobb-Douglas, translog and CES cost functions, household gasoline consumption, hedonic housing prices, option prices and state price density estimation. The book should be of interest to a broad range of economists including those working in industrial organization, labor, development, urban, energy and financial economics. A variety of testing procedures are covered including simple goodness of fit tests and residual regression tests. These procedures can be used to test hypotheses such as parametric and semiparametric specifications, significance, monotonicity and additive separability. Other topics include endogeneity of parametric and nonparametric effects, as well as heteroskedasticity and autocorrelation in the residuals. Bootstrap procedures are provided.


Nonparametric Econometric Methods and Application

Nonparametric Econometric Methods and Application

Author: Thanasis Stengos

Publisher: MDPI

Published: 2019-05-20

Total Pages: 224

ISBN-13: 3038979643

DOWNLOAD EBOOK

The present Special Issue collects a number of new contributions both at the theoretical level and in terms of applications in the areas of nonparametric and semiparametric econometric methods. In particular, this collection of papers that cover areas such as developments in local smoothing techniques, splines, series estimators, and wavelets will add to the existing rich literature on these subjects and enhance our ability to use data to test economic hypotheses in a variety of fields, such as financial economics, microeconomics, macroeconomics, labor economics, and economic growth, to name a few.


Nonparametric and Semiparametric Models

Nonparametric and Semiparametric Models

Author: Wolfgang Karl Härdle

Publisher: Springer Science & Business Media

Published: 2012-08-27

Total Pages: 317

ISBN-13: 364217146X

DOWNLOAD EBOOK

The statistical and mathematical principles of smoothing with a focus on applicable techniques are presented in this book. It naturally splits into two parts: The first part is intended for undergraduate students majoring in mathematics, statistics, econometrics or biometrics whereas the second part is intended to be used by master and PhD students or researchers. The material is easy to accomplish since the e-book character of the text gives a maximum of flexibility in learning (and teaching) intensity.