Applied Genetic Programming and Machine Learning

Applied Genetic Programming and Machine Learning

Author: Hitoshi Iba

Publisher: CRC Press

Published: 2009-08-26

Total Pages: 354

ISBN-13: 1439803706

DOWNLOAD EBOOK

What do financial data prediction, day-trading rule development, and bio-marker selection have in common? They are just a few of the tasks that could potentially be resolved with genetic programming and machine learning techniques. Written by leaders in this field, Applied Genetic Programming and Machine Learning delineates the extension of Genetic


Genetic Algorithms and Machine Learning for Programmers

Genetic Algorithms and Machine Learning for Programmers

Author: Frances Buontempo

Publisher:

Published: 2019

Total Pages: 0

ISBN-13: 9781680506204

DOWNLOAD EBOOK

Self-driving cars, natural language recognition, and online recommendation engines are all possible thanks to machine learning. Discover machine learning algorithms using a handful of self-contained recipes. Create your own genetic algorithms, nature-inspired swarms, Monte Carlo simulations, and cellular automata. Find minima and maxima, using hill climbing and simulated annealing. Try selection mathods, including tournament and roulette wheels. Learn about heuristics, fitness functions, metrics, and clusters.


Hands-On Genetic Algorithms with Python

Hands-On Genetic Algorithms with Python

Author: Eyal Wirsansky

Publisher: Packt Publishing Ltd

Published: 2020-01-31

Total Pages: 334

ISBN-13: 1838559183

DOWNLOAD EBOOK

Explore the ever-growing world of genetic algorithms to solve search, optimization, and AI-related tasks, and improve machine learning models using Python libraries such as DEAP, scikit-learn, and NumPy Key Features Explore the ins and outs of genetic algorithms with this fast-paced guide Implement tasks such as feature selection, search optimization, and cluster analysis using Python Solve combinatorial problems, optimize functions, and enhance the performance of artificial intelligence applications Book DescriptionGenetic algorithms are a family of search, optimization, and learning algorithms inspired by the principles of natural evolution. By imitating the evolutionary process, genetic algorithms can overcome hurdles encountered in traditional search algorithms and provide high-quality solutions for a variety of problems. This book will help you get to grips with a powerful yet simple approach to applying genetic algorithms to a wide range of tasks using Python, covering the latest developments in artificial intelligence. After introducing you to genetic algorithms and their principles of operation, you'll understand how they differ from traditional algorithms and what types of problems they can solve. You'll then discover how they can be applied to search and optimization problems, such as planning, scheduling, gaming, and analytics. As you advance, you'll also learn how to use genetic algorithms to improve your machine learning and deep learning models, solve reinforcement learning tasks, and perform image reconstruction. Finally, you'll cover several related technologies that can open up new possibilities for future applications. By the end of this book, you'll have hands-on experience of applying genetic algorithms in artificial intelligence as well as in numerous other domains.What you will learn Understand how to use state-of-the-art Python tools to create genetic algorithm-based applications Use genetic algorithms to optimize functions and solve planning and scheduling problems Enhance the performance of machine learning models and optimize deep learning network architecture Apply genetic algorithms to reinforcement learning tasks using OpenAI Gym Explore how images can be reconstructed using a set of semi-transparent shapes Discover other bio-inspired techniques, such as genetic programming and particle swarm optimization Who this book is for This book is for software developers, data scientists, and AI enthusiasts who want to use genetic algorithms to carry out intelligent tasks in their applications. Working knowledge of Python and basic knowledge of mathematics and computer science will help you get the most out of this book.


Genetic Algorithms in Search, Optimization, and Machine Learning

Genetic Algorithms in Search, Optimization, and Machine Learning

Author: David Edward Goldberg

Publisher: Addison-Wesley Professional

Published: 1989

Total Pages: 436

ISBN-13:

DOWNLOAD EBOOK

A gentle introduction to genetic algorithms. Genetic algorithms revisited: mathematical foundations. Computer implementation of a genetic algorithm. Some applications of genetic algorithms. Advanced operators and techniques in genetic search. Introduction to genetics-based machine learning. Applications of genetics-based machine learning. A look back, a glance ahead. A review of combinatorics and elementary probability. Pascal with random number generation for fortran, basic, and cobol programmers. A simple genetic algorithm (SGA) in pascal. A simple classifier system(SCS) in pascal. Partition coefficient transforms for problem-coding analysis.


Learning Genetic Algorithms with Python

Learning Genetic Algorithms with Python

Author: Ivan Gridin

Publisher: BPB Publications

Published: 2021-02-13

Total Pages: 330

ISBN-13: 8194837758

DOWNLOAD EBOOK

Refuel your AI Models and ML applications with High-Quality Optimization and Search Solutions DESCRIPTION Genetic algorithms are one of the most straightforward and powerful techniques used in machine learning. This book ÔLearning Genetic Algorithms with PythonÕ guides the reader right from the basics of genetic algorithms to its real practical implementation in production environments.Ê Each of the chapters gives the reader an intuitive understanding of each concept. You will learn how to build a genetic algorithm from scratch and implement it in real-life problems. Covered with practical illustrated examples, you will learn to design and choose the best model architecture for the particular tasks. Cutting edge examples like radar and football manager problem statements, you will learn to solve high-dimensional big data challenges with ways of optimizing genetic algorithms. KEY FEATURESÊÊ _ Complete coverage on practical implementation of genetic algorithms. _ Intuitive explanations and visualizations supply theoretical concepts. _ Added examples and use-cases on the performance of genetic algorithms. _ Use of Python libraries and a niche coverage on the performance optimization of genetic algorithms. WHAT YOU WILL LEARNÊ _ Understand the mechanism of genetic algorithms using popular python libraries. _ Learn the principles and architecture of genetic algorithms. _ Apply and Solve planning, scheduling and analytics problems in Enterprise applications. _Ê Expert learning on prime concepts like Selection, Mutation and Crossover. WHO THIS BOOK IS FORÊÊ The book is for Data Science team, Analytics team, AI Engineers, ML Professionals who want to integrate genetic algorithms to refuel their ML and AI applications. No special expertise about machine learning is required although a basic knowledge of Python is expected. TABLE OF CONTENTS 1. Introduction 2. Genetic Algorithm Flow 3. Selection 4. Crossover 5. Mutation 6. Effectiveness 7. Parameter Tuning 8. Black-box Function 9. Combinatorial Optimization: Binary Gene Encoding 10. Combinatorial Optimization: Ordered Gene Encoding 11. Other Common Problems 12. Adaptive Genetic Algorithm 13. Improving Performance


An Introduction to Genetic Algorithms

An Introduction to Genetic Algorithms

Author: Melanie Mitchell

Publisher: MIT Press

Published: 1998-03-02

Total Pages: 226

ISBN-13: 9780262631853

DOWNLOAD EBOOK

Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics—particularly in machine learning, scientific modeling, and artificial life—and reviews a broad span of research, including the work of Mitchell and her colleagues. The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines. An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.


Programming Machine Learning

Programming Machine Learning

Author: Paolo Perrotta

Publisher: Pragmatic Bookshelf

Published: 2020-03-31

Total Pages: 437

ISBN-13: 1680507710

DOWNLOAD EBOOK

You've decided to tackle machine learning - because you're job hunting, embarking on a new project, or just think self-driving cars are cool. But where to start? It's easy to be intimidated, even as a software developer. The good news is that it doesn't have to be that hard. Master machine learning by writing code one line at a time, from simple learning programs all the way to a true deep learning system. Tackle the hard topics by breaking them down so they're easier to understand, and build your confidence by getting your hands dirty. Peel away the obscurities of machine learning, starting from scratch and going all the way to deep learning. Machine learning can be intimidating, with its reliance on math and algorithms that most programmers don't encounter in their regular work. Take a hands-on approach, writing the Python code yourself, without any libraries to obscure what's really going on. Iterate on your design, and add layers of complexity as you go. Build an image recognition application from scratch with supervised learning. Predict the future with linear regression. Dive into gradient descent, a fundamental algorithm that drives most of machine learning. Create perceptrons to classify data. Build neural networks to tackle more complex and sophisticated data sets. Train and refine those networks with backpropagation and batching. Layer the neural networks, eliminate overfitting, and add convolution to transform your neural network into a true deep learning system. Start from the beginning and code your way to machine learning mastery. What You Need: The examples in this book are written in Python, but don't worry if you don't know this language: you'll pick up all the Python you need very quickly. Apart from that, you'll only need your computer, and your code-adept brain.


Genetic Programming

Genetic Programming

Author: Wolfgang Banzhaf

Publisher: Springer Science & Business

Published: 1998

Total Pages: 506

ISBN-13: 9781558605107

DOWNLOAD EBOOK

To order this title for shipment to Austria, Germany, or Switzerland, please contact dpunkt verlag directly. "[The authors] have performed a remarkable double service with this excellent book on genetic programming. First, they give an up-to-date view of the rapidly growing field of automatic creation of computer programs by means of evolution and, second, they bring together their own innovative and formidable work on evolution of assembly language machine code and linear genomes." --John R. Koza Since the early 1990s, genetic programming (GP)-a discipline whose goal is to enable the automatic generation of computer programs-has emerged as one of the most promising paradigms for fast, productive software development. GP combines biological metaphors gleaned from Darwin's theory of evolution with computer-science approaches drawn from the field of machine learning to create programs that are capable of adapting or recreating themselves for open-ended tasks. This unique introduction to GP provides a detailed overview of the subject and its antecedents, with extensive references to the published and online literature. In addition to explaining the fundamental theory and important algorithms, the text includes practical discussions covering a wealth of potential applications and real-world implementation techniques. Software professionals needing to understand and apply GP concepts will find this book an invaluable practical and theoretical guide.


Machine Learning

Machine Learning

Author: Hojjat Adeli

Publisher:

Published: 1995

Total Pages: 232

ISBN-13:

DOWNLOAD EBOOK

This is the only book to apply neural nets, genetic algorithms, and fuzzy set theory to the fast growing field of machine learning. Placing particular emphasis on neural networks, it explores how to integrate them with other technologies to improve their performance. Examples are included for each system discussed.


Practical Genetic Algorithms

Practical Genetic Algorithms

Author: Randy L. Haupt

Publisher: John Wiley & Sons

Published: 2004-07-30

Total Pages: 273

ISBN-13: 0471671754

DOWNLOAD EBOOK

* This book deals with the fundamentals of genetic algorithms and their applications in a variety of different areas of engineering and science * Most significant update to the second edition is the MATLAB codes that accompany the text * Provides a thorough discussion of hybrid genetic algorithms * Features more examples than first edition