This comprehensive study of dynamic programming applied to numerical solution of optimization problems. It will interest aerodynamic, control, and industrial engineers, numerical analysts, and computer specialists, applied mathematicians, economists, and operations and systems analysts. Originally published in 1962. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Based on the results of over 10 years of research and development by the authors, this book presents a broad cross section of dynamic programming (DP) techniques applied to the optimization of dynamical systems. The main goal of the research effort was to develop a robust path planning/trajectory optimization tool that did not require an initial guess. The goal was partially met with a combination of DP and homotopy algorithms. DP algorithms are presented here with a theoretical development, and their successful application to variety of practical engineering problems is emphasized.
Mathematical programming: an overview; solving linear programs; sensitivity analysis; duality in linear programming; mathematical programming in practice; integration of strategic and tactical planning in the aluminum industry; planning the mission and composition of the U.S. merchant Marine fleet; network models; integer programming; design of a naval tender job shop; dynamic programming; large-scale systems; nonlinear programming; a system for bank portfolio planning; vectors and matrices; linear programming in matrix form; a labeling algorithm for the maximun-flow network problem.
Introduction to mathematical theory of multistage decision processes takes a "functional equation" approach. Topics include existence and uniqueness theorems, optimal inventory equation, bottleneck problems, multistage games, Markovian decision processes, and more. 1957 edition.
Humans interact with and are part of the mysterious processes of nature. Inevitably they have to discover how to manage the environment for their long-term survival and benefit. To do this successfully means learning something about the dynamics of natural processes, and then using the knowledge to work with the forces of nature for some desired outcome. These are intriguing and challenging tasks. This book describes a technique which has much to offer in attempting to achieve the latter task. A knowledge of dynamic programming is useful for anyone interested in the optimal management of agricultural and natural resources for two reasons. First, resource management problems are often problems of dynamic optimization. The dynamic programming approach offers insights into the economics of dynamic optimization which can be explained much more simply than can other approaches. Conditions for the optimal management of a resource can be derived using the logic of dynamic programming, taking as a starting point the usual economic definition of the value of a resource which is optimally managed through time. This is set out in Chapter I for a general resource problem with the minimum of mathematics. The results are related to the discrete maximum principle of control theory. In subsequent chapters dynamic programming arguments are used to derive optimality conditions for particular resources.
Individuals and families make key decisions that impact many aspects of financial stability and determine the future of the economy. These decisions involve balancing current sacrifice against future benefits. People have to decide how much to invest in health care, exercise, their diet, and insurance. They must decide how much debt to take on, and how much to save. And they make choices about jobs that determine employment and unemployment levels. Forward-Looking Decision Making is about modeling this individual or family-based decision making using an optimizing dynamic programming model. Robert Hall first reviews ideas about dynamic programs and introduces new ideas about numerical solutions and the representation of solved models as Markov processes. He surveys recent research on the parameters of preferences--the intertemporal elasticity of substitution, the Frisch elasticity of labor supply, and the Frisch cross-elasticity. He then examines dynamic programming models applied to health spending, long-term care insurance, employment, entrepreneurial risk-taking, and consumer debt. Linking theory with data and applying them to real-world problems, Forward-Looking Decision Making uses dynamic optimization programming models to shed light on individual behaviors and their economic implications.
From household appliances to applications in robotics, engineered systems involving complex dynamics can only be as effective as the algorithms that control them. While Dynamic Programming (DP) has provided researchers with a way to optimally solve decision and control problems involving complex dynamic systems, its practical value was limited by algorithms that lacked the capacity to scale up to realistic problems. However, in recent years, dramatic developments in Reinforcement Learning (RL), the model-free counterpart of DP, changed our understanding of what is possible. Those developments led to the creation of reliable methods that can be applied even when a mathematical model of the system is unavailable, allowing researchers to solve challenging control problems in engineering, as well as in a variety of other disciplines, including economics, medicine, and artificial intelligence. Reinforcement Learning and Dynamic Programming Using Function Approximators provides a comprehensive and unparalleled exploration of the field of RL and DP. With a focus on continuous-variable problems, this seminal text details essential developments that have substantially altered the field over the past decade. In its pages, pioneering experts provide a concise introduction to classical RL and DP, followed by an extensive presentation of the state-of-the-art and novel methods in RL and DP with approximation. Combining algorithm development with theoretical guarantees, they elaborate on their work with illustrative examples and insightful comparisons. Three individual chapters are dedicated to representative algorithms from each of the major classes of techniques: value iteration, policy iteration, and policy search. The features and performance of these algorithms are highlighted in extensive experimental studies on a range of control applications. The recent development of applications involving complex systems has led to a surge of interest in RL and DP methods and the subsequent need for a quality resource on the subject. For graduate students and others new to the field, this book offers a thorough introduction to both the basics and emerging methods. And for those researchers and practitioners working in the fields of optimal and adaptive control, machine learning, artificial intelligence, and operations research, this resource offers a combination of practical algorithms, theoretical analysis, and comprehensive examples that they will be able to adapt and apply to their own work. Access the authors' website at www.dcsc.tudelft.nl/rlbook/ for additional material, including computer code used in the studies and information concerning new developments.
A complete and accessible introduction to the real-world applications of approximate dynamic programming With the growing levels of sophistication in modern-day operations, it is vital for practitioners to understand how to approach, model, and solve complex industrial problems. Approximate Dynamic Programming is a result of the author's decades of experience working in large industrial settings to develop practical and high-quality solutions to problems that involve making decisions in the presence of uncertainty. This groundbreaking book uniquely integrates four distinct disciplines—Markov design processes, mathematical programming, simulation, and statistics—to demonstrate how to successfully model and solve a wide range of real-life problems using the techniques of approximate dynamic programming (ADP). The reader is introduced to the three curses of dimensionality that impact complex problems and is also shown how the post-decision state variable allows for the use of classical algorithmic strategies from operations research to treat complex stochastic optimization problems. Designed as an introduction and assuming no prior training in dynamic programming of any form, Approximate Dynamic Programming contains dozens of algorithms that are intended to serve as a starting point in the design of practical solutions for real problems. The book provides detailed coverage of implementation challenges including: modeling complex sequential decision processes under uncertainty, identifying robust policies, designing and estimating value function approximations, choosing effective stepsize rules, and resolving convergence issues. With a focus on modeling and algorithms in conjunction with the language of mainstream operations research, artificial intelligence, and control theory, Approximate Dynamic Programming: Models complex, high-dimensional problems in a natural and practical way, which draws on years of industrial projects Introduces and emphasizes the power of estimating a value function around the post-decision state, allowing solution algorithms to be broken down into three fundamental steps: classical simulation, classical optimization, and classical statistics Presents a thorough discussion of recursive estimation, including fundamental theory and a number of issues that arise in the development of practical algorithms Offers a variety of methods for approximating dynamic programs that have appeared in previous literature, but that have never been presented in the coherent format of a book Motivated by examples from modern-day operations research, Approximate Dynamic Programming is an accessible introduction to dynamic modeling and is also a valuable guide for the development of high-quality solutions to problems that exist in operations research and engineering. The clear and precise presentation of the material makes this an appropriate text for advanced undergraduate and beginning graduate courses, while also serving as a reference for researchers and practitioners. A companion Web site is available for readers, which includes additional exercises, solutions to exercises, and data sets to reinforce the book's main concepts.
This book is an introduction to optimal stochastic control for continuous time Markov processes and the theory of viscosity solutions. It covers dynamic programming for deterministic optimal control problems, as well as to the corresponding theory of viscosity solutions. New chapters in this second edition introduce the role of stochastic optimal control in portfolio optimization and in pricing derivatives in incomplete markets and two-controller, zero-sum differential games.