Quantitative Fundamentals of Molecular and Cellular Bioengineering

Quantitative Fundamentals of Molecular and Cellular Bioengineering

Author: K. Dane Wittrup

Publisher: MIT Press

Published: 2020-01-07

Total Pages: 593

ISBN-13: 0262042657

DOWNLOAD EBOOK

A comprehensive presentation of essential topics for biological engineers, focusing on the development and application of dynamic models of biomolecular and cellular phenomena. This book describes the fundamental molecular and cellular events responsible for biological function, develops models to study biomolecular and cellular phenomena, and shows, with examples, how models are applied in the design and interpretation of experiments on biological systems. Integrating molecular cell biology with quantitative engineering analysis and design, it is the first textbook to offer a comprehensive presentation of these essential topics for chemical and biological engineering. The book systematically develops the concepts necessary to understand and study complex biological phenomena, moving from the simplest elements at the smallest scale and progressively adding complexity at the cellular organizational level, focusing on experimental testing of mechanistic hypotheses. After introducing the motivations for formulation of mathematical rate process models in biology, the text goes on to cover such topics as noncovalent binding interactions; quantitative descriptions of the transient, steady state, and equilibrium interactions of proteins and their ligands; enzyme kinetics; gene expression and protein trafficking; network dynamics; quantitative descriptions of growth dynamics; coupled transport and reaction; and discrete stochastic processes. The textbook is intended for advanced undergraduate and graduate courses in chemical engineering and bioengineering, and has been developed by the authors for classes they teach at MIT and the University of Minnesota.


Principles of Cellular Engineering

Principles of Cellular Engineering

Author: Michael R. King

Publisher: Elsevier

Published: 2011-04-28

Total Pages: 339

ISBN-13: 0080539637

DOWNLOAD EBOOK

This comprehensive work discusses novel biomolecular surfaces that have been engineered to either control or measure cell function at the atomic, molecular, and cellular levels. Each chapter presents real results, concepts, and expert perspectives of how cells interact with biomolecular surfaces, with particular emphasis on interactions within complex mechanical environments such as in the cardiovascular system. In addition, the book provides detailed coverage of inflammation and cellular immune response as a useful model for how engineering concepts and tools may be effectively applied to complex systems in biomedicine.-Accessible to biologists looking for new ways to model their results and engineers interested in biomedical applications -Useful to researchers in biomaterials, inflammation, and vascular biology -Excellent resource for graduate students as a textbook in cell & tissue engineering or cell mechanics courses


Computational Cell Biology

Computational Cell Biology

Author: Christopher P. Fall

Publisher: Springer Science & Business Media

Published: 2007-06-04

Total Pages: 484

ISBN-13: 0387224599

DOWNLOAD EBOOK

This textbook provides an introduction to dynamic modeling in molecular cell biology, taking a computational and intuitive approach. Detailed illustrations, examples, and exercises are included throughout the text. Appendices containing mathematical and computational techniques are provided as a reference tool.


Molecular Communication

Molecular Communication

Author: Tadashi Nakano

Publisher: Cambridge University Press

Published: 2013-09-12

Total Pages: 193

ISBN-13: 1107292387

DOWNLOAD EBOOK

This comprehensive guide, by pioneers in the field, brings together, for the first time, everything a new researcher, graduate student or industry practitioner needs to get started in molecular communication. Written with accessibility in mind, it requires little background knowledge, and provides a detailed introduction to the relevant aspects of biology and information theory, as well as coverage of practical systems. The authors start by describing biological nanomachines, the basics of biological molecular communication and the microorganisms that use it. They then proceed to engineered molecular communication and the molecular communication paradigm, with mathematical models of various types of molecular communication and a description of the information and communication theory of molecular communication. Finally, the practical aspects of designing molecular communication systems are presented, including a review of the key applications. Ideal for engineers and biologists looking to get up to speed on the current practice in this growing field.


The Science and Applications of Synthetic and Systems Biology

The Science and Applications of Synthetic and Systems Biology

Author: Institute of Medicine

Publisher: National Academies Press

Published: 2011-12-30

Total Pages: 570

ISBN-13: 0309219396

DOWNLOAD EBOOK

Many potential applications of synthetic and systems biology are relevant to the challenges associated with the detection, surveillance, and responses to emerging and re-emerging infectious diseases. On March 14 and 15, 2011, the Institute of Medicine's (IOM's) Forum on Microbial Threats convened a public workshop in Washington, DC, to explore the current state of the science of synthetic biology, including its dependency on systems biology; discussed the different approaches that scientists are taking to engineer, or reengineer, biological systems; and discussed how the tools and approaches of synthetic and systems biology were being applied to mitigate the risks associated with emerging infectious diseases. The Science and Applications of Synthetic and Systems Biology is organized into sections as a topic-by-topic distillation of the presentations and discussions that took place at the workshop. Its purpose is to present information from relevant experience, to delineate a range of pivotal issues and their respective challenges, and to offer differing perspectives on the topic as discussed and described by the workshop participants. This report also includes a collection of individually authored papers and commentary.


Quantum Biological Information Theory

Quantum Biological Information Theory

Author: Ivan B. Djordjevic

Publisher: Springer

Published: 2015-10-05

Total Pages: 278

ISBN-13: 3319228161

DOWNLOAD EBOOK

This book is a self-contained, tutorial-based introduction to quantum information theory and quantum biology. It serves as a single-source reference to the topic for researchers in bioengineering, communications engineering, electrical engineering, applied mathematics, biology, computer science, and physics. The book provides all the essential principles of the quantum biological information theory required to describe the quantum information transfer from DNA to proteins, the sources of genetic noise and genetic errors as well as their effects. Integrates quantum information and quantum biology concepts; Assumes only knowledge of basic concepts of vector algebra at undergraduate level; Provides a thorough introduction to basic concepts of quantum information processing, quantum information theory, and quantum biology; Includes in-depth discussion of the quantum biological channel modelling, quantum biological channel capacity calculation, quantum models of aging, quantum models of evolution, quantum models on tumor and cancer development, quantum modeling of bird navigation compass, quantum aspects of photosynthesis, quantum biological error correction.


Cell Culture Engineering

Cell Culture Engineering

Author: Wei-Shu Hu

Publisher: Springer

Published: 2006-08-16

Total Pages: 179

ISBN-13: 3540340076

DOWNLOAD EBOOK

Since the introduction of recombinant human growth hormone and insulin a quarter century ago, protein therapeutics has greatly broadened the ho- zon of health care. Many patients suffering with life-threatening diseases or chronic dysfunctions, which were medically untreatable not long ago, can attest to the wonder these drugs have achieved. Although the ?rst generation of p- tein therapeutics was produced in recombinant Escherichia coli, most recent products use mammalian cells as production hosts. Not long after the ?rst p- duction of recombinant proteins in E. coli, it was realized that the complex tasks of most post-translational modi?cations on proteins could only be ef?ciently carried out in mammalian cells. In the 1990s, we witnessed a rapid expansion of mammalian-cell-derived protein therapeutics, chie?y antibodies. In fact, it has been nearly a decade since the market value of mammalian-cell-derived protein therapeutics surpassed that of those produced from E. coli. A common characteristic of recent antibody products is the relatively large dose required for effective therapy, demanding larger quantities for the treatment of a given disease. This, coupled with the broadening repertoire of protein drugs, has rapidly expanded the quantity needed for clinical applications. The increasing demand for protein therapeutics has not been met exclusively by construction of new manufacturing plants and increasing total volume capacity. More - portantly the productivity of cell culture processes has been driven upward by an order of magnitude in the past decade.


Bioprocess Engineering

Bioprocess Engineering

Author: Shijie Liu

Publisher: Newnes

Published: 2012-11-21

Total Pages: 1001

ISBN-13: 0444595228

DOWNLOAD EBOOK

Bioprocess Engineering involves the design and development of equipment and processes for the manufacturing of products such as food, feed, pharmaceuticals, nutraceuticals, chemicals, and polymers and paper from biological materials. It also deals with studying various biotechnological processes. "Bioprocess Kinetics and Systems Engineering" first of its kind contains systematic and comprehensive content on bioprocess kinetics, bioprocess systems, sustainability and reaction engineering. Dr. Shijie Liu reviews the relevant fundamentals of chemical kinetics-including batch and continuous reactors, biochemistry, microbiology, molecular biology, reaction engineering, and bioprocess systems engineering- introducing key principles that enable bioprocess engineers to engage in the analysis, optimization, design and consistent control over biological and chemical transformations. The quantitative treatment of bioprocesses is the central theme of this book, while more advanced techniques and applications are covered with some depth. Many theoretical derivations and simplifications are used to demonstrate how empirical kinetic models are applicable to complicated bioprocess systems. - Contains extensive illustrative drawings which make the understanding of the subject easy - Contains worked examples of the various process parameters, their significance and their specific practical use - Provides the theory of bioprocess kinetics from simple concepts to complex metabolic pathways - Incorporates sustainability concepts into the various bioprocesses


Emerging Tools for Single-Cell Analysis

Emerging Tools for Single-Cell Analysis

Author: Gary Durack

Publisher: John Wiley & Sons

Published: 2004-03-24

Total Pages: 375

ISBN-13: 0471461008

DOWNLOAD EBOOK

The resurgence of interest in high-resolution evaluation of single-cell properties has led to examining where current technology stands at the beginning of a new millennium. Engineers and scientists have produced significant advances in cytometric technologies in just the past few years. Emerging Tools for Single-Cell Analysis: Advances in Optical Measurement Technologies stresses the applications and theories behind some of these advances in cell measurement and cell- sorting technologies. Rapid assessment of the proper function of cells and molecular processes within cells is essential. To that end, new and varying technologies present important diagnostic and prognostic tools relevant to a variety of diseases. Future developments in miniaturization of electronics, micro- and nanomachines, and biomedical engineering are certain to impact cell biology. New analytical technologies are revolutionizing our ability to functionally characterize, isolate, and manipulate single cells. This timely book offers researchers and design engineers much-needed information as they further develop technologies for cell analysis. By comparing and contrasting various approaches, the authors explain how those technologies converge toward similar goals: evaluating the properties of cells and sorting cells on those properties using optically-based measurement systems. Emerging Tools for Single-Cell Analysis offers scientists and engineers a vision of the exciting possibilities that exist as new technologies are applied to single-cell analysis,