Numerous worked examples and exercises highlight this unified treatment. Simple explanations of difficult subjects make it accessible to undergraduates as well as an ideal self-study guide. 1990 edition.
This book provides an introduction to those parts of analysis that are most useful in applications for graduate students. The material is selected for use in applied problems, and is presented clearly and simply but without sacrificing mathematical rigor. The text is accessible to students from a wide variety of backgrounds, including undergraduate students entering applied mathematics from non-mathematical fields and graduate students in the sciences and engineering who want to learn analysis. A basic background in calculus, linear algebra and ordinary differential equations, as well as some familiarity with functions and sets, should be sufficient.
This graduate-level text opens with an elementary presentation of Hilbert space theory sufficient for understanding the rest of the book. Additional topics include boundary value problems, evolution equations, optimization, and approximation.1979 edition.
The methods of functional analysis have helped solve diverse real-world problems in optimization, modeling, analysis, numerical approximation, and computer simulation. Applied Functional Analysis presents functional analysis results surfacing repeatedly in scientific and technological applications and presides over the most current analytical and numerical methods in infinite-dimensional spaces. This reference highlights critical studies in projection theorem, Riesz representation theorem, and properties of operators in Hilbert space and covers special classes of optimization problems. Supported by 2200 display equations, this guide incorporates hundreds of up-to-date citations.
Numerous examples and exercises highlight this unified treatment of the Hermitian operator theory in its Hilbert space setting. Its simple explanations of difficult subjects make it intuitively appealing to students in applied mathematics, physics, and engineering. It is also a fine reference for professionals. 1990 edition.
The necessary foundation in quantum mechanics is covered in this book. Topics include basic properties of Hibert spaces, scattering theory, and a number of applications such as the S-matrix, time delay, and the Flux-Across-Surfaces Theorem.
The monograph is devoted to a systematic study of means of Hilbert space operators by a unified method based on the theory of double integral transformations and Peller's characterization of Schur multipliers. General properties on means of operators such as comparison results, norm estimates and convergence criteria are established. After some general theory, special investigations are focused on three one-parameter families of A-L-G (arithmetic-logarithmic-geometric) interpolation means, Heinz-type means and binomial means. In particular, norm continuity in the parameter is examined for such means. Some necessary technical results are collected as appendices.
Presenting excellent material for a first course on functional analysis , Functional Analysis in Applied Mathematics and Engineering concentrates on material that will be useful to control engineers from the disciplines of electrical, mechanical, and aerospace engineering. This text/reference discusses: rudimentary topology Banach's fixed point theorem with applications L^p-spaces density theorems for testfunctions infinite dimensional spaces bounded linear operators Fourier series open mapping and closed graph theorems compact and differential operators Hilbert-Schmidt operators Volterra equations Sobolev spaces control theory and variational analysis Hilbert Uniqueness Method boundary element methods Functional Analysis in Applied Mathematics and Engineering begins with an introduction to the important, abstract basic function spaces and operators with mathematical rigor, then studies problems in the Hilbert space setting. The author proves the spectral theorem for unbounded operators with compact inverses and goes on to present the abstract evolution semigroup theory for time dependent linear partial differential operators. This structure establishes a firm foundation for the more advanced topics discussed later in the text.
Introduction to the themes of mathematical analysis, geared toward advanced undergraduate and graduate students. Topics include operators, function spaces, Hilbert spaces, and elementary Fourier analysis. Numerous exercises and worked examples.1973 edition.
Building on the success of the two previous editions, Introduction to Hilbert Spaces with Applications, Third Edition, offers an overview of the basic ideas and results of Hilbert space theory and functional analysis. It acquaints students with the Lebesgue integral, and includes an enhanced presentation of results and proofs. Students and researchers will benefit from the wealth of revised examples in new, diverse applications as they apply to optimization, variational and control problems, and problems in approximation theory, nonlinear instability, and bifurcation. The text also includes a popular chapter on wavelets that has been completely updated. Students and researchers agree that this is the definitive text on Hilbert Space theory. - Updated chapter on wavelets - Improved presentation on results and proof - Revised examples and updated applications - Completely updated list of references