An Introduction to the Topological Derivative Method

An Introduction to the Topological Derivative Method

Author: Antonio André Novotny

Publisher: Springer Nature

Published: 2020-01-21

Total Pages: 120

ISBN-13: 3030369153

DOWNLOAD EBOOK

This book presents the topological derivative method through selected examples, using a direct approach based on calculus of variations combined with compound asymptotic analysis. This new concept in shape optimization has applications in many different fields such as topology optimization, inverse problems, imaging processing, multi-scale material design and mechanical modeling including damage and fracture evolution phenomena. In particular, the topological derivative is used here in numerical methods of shape optimization, with applications in the context of compliance structural topology optimization and topology design of compliant mechanisms. Some exercises are offered at the end of each chapter, helping the reader to better understand the involved concepts.


Applications of the Topological Derivative Method

Applications of the Topological Derivative Method

Author: Antonio André Novotny

Publisher: Springer

Published: 2018-12-28

Total Pages: 222

ISBN-13: 3030054322

DOWNLOAD EBOOK

The book presents new results and applications of the topological derivative method in control theory, topology optimization and inverse problems. It also introduces the theory in singularly perturbed geometrical domains using selected examples. Recognized as a robust numerical technique in engineering applications, such as topology optimization, inverse problems, imaging processing, multi-scale material design and mechanical modeling including damage and fracture evolution phenomena, the topological derivative method is based on the asymptotic approximations of solutions to elliptic boundary value problems combined with mathematical programming tools. The book presents the first order topology design algorithm and its applications in topology optimization, and introduces the second order Newton-type reconstruction algorithm based on higher order topological derivatives for solving inverse reconstruction problems. It is intended for researchers and students in applied mathematics and computational mechanics interested in the mathematical aspects of the topological derivative method as well as its applications in computational mechanics.


Topological Methods for Differential Equations and Inclusions

Topological Methods for Differential Equations and Inclusions

Author: John R. Graef

Publisher: CRC Press

Published: 2018-09-25

Total Pages: 375

ISBN-13: 0429822626

DOWNLOAD EBOOK

Topological Methods for Differential Equations and Inclusions covers the important topics involving topological methods in the theory of systems of differential equations. The equivalence between a control system and the corresponding differential inclusion is the central idea used to prove existence theorems in optimal control theory. Since the dynamics of economic, social, and biological systems are multi-valued, differential inclusions serve as natural models in macro systems with hysteresis.


Topological Methods For Set-valued Nonlinear Analysis

Topological Methods For Set-valued Nonlinear Analysis

Author: Enayet U Tarafdar

Publisher: World Scientific

Published: 2008-02-22

Total Pages: 627

ISBN-13: 9814476218

DOWNLOAD EBOOK

This book provides a comprehensive overview of the authors' pioneering contributions to nonlinear set-valued analysis by topological methods. The coverage includes fixed point theory, degree theory, the KKM principle, variational inequality theory, the Nash equilibrium point in mathematical economics, the Pareto optimum in optimization, and applications to best approximation theory, partial equations and boundary value problems.Self-contained and unified in presentation, the book considers the existence of equilibrium points of abstract economics in topological vector spaces from the viewpoint of Ky Fan minimax inequalities. It also provides the latest developments in KKM theory and degree theory for nonlinear set-valued mappings.


Advances in Mechanical Engineering

Advances in Mechanical Engineering

Author: B. B. Biswal

Publisher: Springer Nature

Published: 2020-01-16

Total Pages: 1624

ISBN-13: 9811501246

DOWNLOAD EBOOK

This book comprises select proceedings of the International Conference on Recent Innovations and Developments in Mechanical Engineering (IC-RIDME 2018). The book contains peer reviewed articles covering thematic areas such as fluid mechanics, renewable energy, materials and manufacturing, thermal engineering, vibration and acoustics, experimental aerodynamics, turbo machinery, and robotics and mechatronics. Algorithms and methodologies of real-time problems are described in this book. The contents of this book will be useful for both academics and industry professionals.


Applications Of Fractional Calculus In Physics

Applications Of Fractional Calculus In Physics

Author: Rudolf Hilfer

Publisher: World Scientific

Published: 2000-03-02

Total Pages: 473

ISBN-13: 9814496200

DOWNLOAD EBOOK

Fractional calculus is a collection of relatively little-known mathematical results concerning generalizations of differentiation and integration to noninteger orders. While these results have been accumulated over centuries in various branches of mathematics, they have until recently found little appreciation or application in physics and other mathematically oriented sciences. This situation is beginning to change, and there are now a growing number of research areas in physics which employ fractional calculus.This volume provides an introduction to fractional calculus for physicists, and collects easily accessible review articles surveying those areas of physics in which applications of fractional calculus have recently become prominent.


Introduction to Shape Optimization

Introduction to Shape Optimization

Author: Jan Sokolowski

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 254

ISBN-13: 3642581064

DOWNLOAD EBOOK

This book is motivated largely by a desire to solve shape optimization prob lems that arise in applications, particularly in structural mechanics and in the optimal control of distributed parameter systems. Many such problems can be formulated as the minimization of functionals defined over a class of admissible domains. Shape optimization is quite indispensable in the design and construction of industrial structures. For example, aircraft and spacecraft have to satisfy, at the same time, very strict criteria on mechanical performance while weighing as little as possible. The shape optimization problem for such a structure consists in finding a geometry of the structure which minimizes a given functional (e. g. such as the weight of the structure) and yet simultaneously satisfies specific constraints (like thickness, strain energy, or displacement bounds). The geometry of the structure can be considered as a given domain in the three-dimensional Euclidean space. The domain is an open, bounded set whose topology is given, e. g. it may be simply or doubly connected. The boundary is smooth or piecewise smooth, so boundary value problems that are defined in the domain and associated with the classical partial differential equations of mathematical physics are well posed. In general the cost functional takes the form of an integral over the domain or its boundary where the integrand depends smoothly on the solution of a boundary value problem.


Topology from the Differentiable Viewpoint

Topology from the Differentiable Viewpoint

Author: John Willard Milnor

Publisher: Princeton University Press

Published: 1997-12-14

Total Pages: 80

ISBN-13: 9780691048338

DOWNLOAD EBOOK

This elegant book by distinguished mathematician John Milnor, provides a clear and succinct introduction to one of the most important subjects in modern mathematics. Beginning with basic concepts such as diffeomorphisms and smooth manifolds, he goes on to examine tangent spaces, oriented manifolds, and vector fields. Key concepts such as homotopy, the index number of a map, and the Pontryagin construction are discussed. The author presents proofs of Sard's theorem and the Hopf theorem.


Topological Insulators and Topological Superconductors

Topological Insulators and Topological Superconductors

Author: B. Andrei Bernevig

Publisher: Princeton University Press

Published: 2013-04-07

Total Pages: 264

ISBN-13: 1400846730

DOWNLOAD EBOOK

This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topological indices. The book also analyzes recent topics in condensed matter theory and concludes by surveying active subfields of research such as insulators with point-group symmetries and the stability of topological semimetals. Problems at the end of each chapter offer opportunities to test knowledge and engage with frontier research issues. Topological Insulators and Topological Superconductors will provide graduate students and researchers with the physical understanding and mathematical tools needed to embark on research in this rapidly evolving field.


Topological Signal Processing

Topological Signal Processing

Author: Michael Robinson

Publisher: Springer Science & Business Media

Published: 2014-01-07

Total Pages: 245

ISBN-13: 3642361048

DOWNLOAD EBOOK

Signal processing is the discipline of extracting information from collections of measurements. To be effective, the measurements must be organized and then filtered, detected, or transformed to expose the desired information. Distortions caused by uncertainty, noise, and clutter degrade the performance of practical signal processing systems. In aggressively uncertain situations, the full truth about an underlying signal cannot be known. This book develops the theory and practice of signal processing systems for these situations that extract useful, qualitative information using the mathematics of topology -- the study of spaces under continuous transformations. Since the collection of continuous transformations is large and varied, tools which are topologically-motivated are automatically insensitive to substantial distortion. The target audience comprises practitioners as well as researchers, but the book may also be beneficial for graduate students.