Applications of Mössbauer Spectroscopy, Volume I is a collection of essays that discusses the research performed using Mössbauer spectroscopy. The book presents the effect of some stabilizers of polyethylene. It demonstrates the polymerization processes and structure of catalytically active centers. The text also describes the chemical processes in butyl rubber vulcanization. It discusses the experimental studies of iron transport proteins and the thermal decomposition of solids. The section that follows describes the paramagnetic hyperfine structure. The book will provide valuable insights for scientists, chemists, students, and researchers in the field of organic chemistry.
Two decades have passed since the original discovery of recoilless nuclear gamma resonance by Rudolf Mossbauer; the spectroscopic method based on this resonance effect - referred to as Mossbauer spectroscopy - has developed into a powerful tool in solid-state research. The users are chemists, physicists, biologists, geologists, and scientists from other disciplines, and the spectrum of problems amenable to this method has become extraordinarily broad. In the present volume we have confined ourselves to applications of Mossbauer spectroscopy to the area of transition elements. We hope that the book will be useful not only to non-Mossbauer special ists with problem-Oriented activities in the chemistry and physics of transition elements, but also to those actively working in the field of Mossbauer spectroscopy on systems (compounds as well as alloys) of transition elements. The first five chapters are directed to introducing the reader who is not familiar with the technique to the principles of the recoilless nuclear resonance effect, the hyperfme interactions between nuclei and electronic properties such as electric and magnetic fields, some essential aspects about measurements, and the evaluation of Moss bauer spectra. Chapter 6 deals with the interpretation of Mossbauer parameters of iron compounds. Here we have placed emphasis on the information about the electronic structure, in correlation with quantum chemical methods, because of its importance for chemical bonding and magnetic properties.
The past twenty five years - roughly the period from 1960 to 1985 - have been by all measures among the most exciting and challenging times of our science. The increasing sensitivity of chemical instrumentation, the introduction of the routine use of computers for data reduction and of microprocessors for instrumental control, the wide-spread utilization of lasers, and the disappearance of traditional disciplinary boundaries between scientific fields are but a few of the examples one could cite to support the introductory contention. Almost all of these developments have had their impact on the development of Mossbauer Effect Spectroscopy into a technique par excellence for the elucidation of problems in all areas of chemistry and its associated sister sciences. Indeed, because this spectroscopy is based on fundamental phenomena in nuclear physics, is described in terms of the theory of the solid state and structural chemistry, is useful in the understanding of chemical reactivity and biological phenomena, and can serve to supplement information developed by many other experimental techniques, it has provided an unparalleled opportunity for the exchange of ideas among practitioners of a very wide variety of subfields of the physical and biological sciences. The present collection of contributions is the direct result of such an interaction.
Mossbauer spectroscopy has proved itself a versatile technique, finding applications in diverse areas of science and industry. Starting from physics and chemistry it spread into biochemistry, mineralogy, biochemistry, corrosion science, geochemistry and archaeology, with applications in industrial and scientific research. The author aims to help advanced university students, professionals and research workers who ask the question "what's in it for us?". After a concise account of experimental techniques, he emphasizes those applications in which there are few, if any, alternative ways of obtaining the same information about electron fields and the nuclei. He explains areas of industrial interest, including the important applications related to tin and iron on which there is much activity in research and development, and interprets the extension of Mossbauer techniques to main group, transitional and other suitable elements. Attention is paid to factors which may lead to misinterpretation of spectra and another chapter covers the complexities of interpreting emission spectra. - Discusses the appearance of Mossbauer spectroscopy in biochemistry, mineralogy, biochemistry, corrosion science, geochemistry and archaeology, with applications in industrial and scientific research - Emphasizes the applications in which there are few, if any, alternative ways of obtaining the same information about electron fields and the nuclei - Attention is paid to the complexities of interpreting emission spectra and the factors which may lead to misinterpretation of spectra
In 1988 the Mossbauer effect community completed 30 years of continual contribution to the fields of nuclear physics, solid state science, and a variety of related disciplines. To celebrate this anniversary, Professor Gonser of the Universitat des Saarlandes has contributed a chapter to this volume on the history of the effect. Although Mossbauer spectroscopy has reached its mature years, the chapters in this volume illustrate that it is still a dynamic field of science with applications to topics ranging from permanent magnets to biologi cal mineralization. During the discussion of a possible chapter for this volume, a potential author asked, "Do we really need another Mossbauer book?" The editors responded in the affirmative because they believe that a volume of this type offers several advantages. First, it provides the author with an opportunity to write a personal view of the subject, either with or without extensive pedagogic content. Second, there is no artificially imposed restriction on length. In response to the question, "How long should my chapter be?," we have responded that it should be as long as is necessary to clearly present, explain, and evaluate the topic. In this type of book, it is not necessary to condense the topic into two, four, or eight pages as is now so often a requirement for publication in the research literature.
Rudolph Mossbauer discovered the phenomenon of recoil-free nuclear resonance fluorescence in 1957-58 and the first indications of hyperfine interactions in a chemical compound were obtained by Kistner and Sunyar in 1960. From these beginnings the technique of Mossbauer spectroscopy rapidly emerged and the astonishing versatility of this new technique soon led to its extensive application to a wide variety of chemical and solid-state problems. This book reviews the results obtained by Mossbauer spectroscopy during the past ten years in the belief that this will provide a firm basis for the continued development and application of the technique to new problems in the future. It has been our aim to write a unified and consistent treatment which firstly presents the basic principles underlying the phenomena involved, then outlines the experimental techniques used, and finally summarises the wealth of experimental and theoretical results which have been obtained. We have tried to give some feeling for the physical basis of the Mossbauer effect with out extensive use of mathematical formalism, and some appreciation of the experimental methods employed without embarking on a detailed discussion of electronics and instrumentation. However, full references to the original literature are provided and particular points can readily be pursued in more detail if required.
This book presents an overview of the latest Mössbauer spectroscopy research. It sheds light on various cutting-edge research subjects: (i) nuclear resonance scattering experiments implemented at synchrotron radiation facilities, e.g., ESRF, DESY and Spring-8; (ii) multidisciplinary materials research related to chemistry, biology, geoscience, molecular magnetism of metal complexes, batteries, and magnetism; (iii) novel imaging techniques based on probing diffusion in solids using Mössbauer spectroscopy. The first three chapters introduce recent research on modern Mössbauer spectroscopy, including nuclear resonant scattering experiments and development of related techniques at synchrotron accelerator facilities. Chapters 4 and 5 then demonstrate the applications of such pioneering techniques to chemistry, biology and geoscience. Chapters 6 and 7 describe the applications to new functional materials, i.e., metal complexes and Li- and Na-ion batteries, while the final two chapters are devoted to two important measuring techniques: Mössbauer spectroscopy under external magnetic fields, and microscopic Mössbauer techniques on diffusion in solids, which are expected to play an essential role in the investigation and characterization of magnetic structures and microstructures in materials. The cutting-edge content provides readers with quick updates on the latest research topics in the field, while the tutorial-style descriptions allow readers unfamiliar with Mössbauer spectroscopy to learn and implement the techniques. As such, the book is especially useful for advanced undergraduate and early graduate students who have recently been assigned to a laboratory.