Applications of Porous Electrodes to Metal-ion Removal and the Design of Battery Systems

Applications of Porous Electrodes to Metal-ion Removal and the Design of Battery Systems

Author:

Publisher:

Published: 1983

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

This dissertation treats the use of porous electrodes as electrochemical reactors for the removal of dilute metal ions. A methodology for the scale-up of porous electrodes used in battery applications is given. Removal of 4 .mu.g Pb/cc in 1 M sulfuric acid was investigated in atmospheric and high-pressure, flow-through porous reactors. The atmospheric reactor used a reticulated vitreous carbon porous bed coated in situ with a mercury film. Best results show 98% removal of lead from the feed stream. Results are summarized in a dimensionless plot of Sherwood number vs Peclet number. High-pressure, porous-electrode experiments were performed to investigate the effect of pressure on the current efficiency. Pressures were varied up to 120 bar on electrode beds of copper or lead-coated spheres. The copper spheres showed high hydrogen evolution rates which inhibited lead deposition, even at high cathodic overpotentials. Use of lead spheres inhibited hydrogen evolution but often resulted in the formation of lead sulfate layers; these layers were difficult to reduce back to lead. Experimental data of one-dimensional porous battery electrodes are combined with a model for the current collector and cell connectors to predict ultimate specific energy and maximum specific power for complete battery systems. Discharge behavior of the plate as a whole is first presented as a function of depth of discharge. These results are combined with the voltage and weight penalties of the interconnecting bus and post, positive and negative active material, cell container, etc. to give specific results for the lithium-aluminum/iron sulfide high-temperature battery. Subject to variation is the number of positive electrodes, grid conductivity, minimum current-collector weight, and total delivered capacity. The battery can be optimized for maximum energy or power, or a compromise design may be selected.


Electrochemical Systems

Electrochemical Systems

Author: John Newman

Publisher: John Wiley & Sons

Published: 2012-11-27

Total Pages: 671

ISBN-13: 0471478423

DOWNLOAD EBOOK

The new edition of the cornerstone text on electrochemistry Spans all the areas of electrochemistry, from the basicsof thermodynamics and electrode kinetics to transport phenomena inelectrolytes, metals, and semiconductors. Newly updated andexpanded, the Third Edition covers important new treatments, ideas,and technologies while also increasing the book's accessibility forreaders in related fields. Rigorous and complete presentation of the fundamentalconcepts In-depth examples applying the concepts to real-life designproblems Homework problems ranging from the reinforcing to the highlythought-provoking Extensive bibliography giving both the historical developmentof the field and references for the practicing electrochemist.


Tutorial Symposium on Electrochemical Engineering, in Honor of Professor John Newman’s 70th Birthday

Tutorial Symposium on Electrochemical Engineering, in Honor of Professor John Newman’s 70th Birthday

Author: T. W. Chapman

Publisher: The Electrochemical Society

Published: 2008-10

Total Pages: 185

ISBN-13: 1566776597

DOWNLOAD EBOOK

Quantitative methods for the analysis and design of electrochemical systems have progressed greatly over the past forty years. Much of this progress is due to the work of Professor John Newman of the University of California-Berkeley. A tutorial symposium was organized to recognize Prof. Newman¿s contributions on the occasion of his 70th birthday. This issue contains a series of invited lectures covering the basic principles of electrochemical engineering as well as a variety of examples of applications in electrodeposition, fuel cells, batteries, and electrolytic processes.


Carbon Materials for Catalysis

Carbon Materials for Catalysis

Author: Philippe Serp

Publisher: John Wiley & Sons

Published: 2009-02-04

Total Pages: 603

ISBN-13: 0470403691

DOWNLOAD EBOOK

This is the first comprehensive book covering all aspects of the use of carbonaceous materials in heterogeneous catalysis. It covers the preparation and characterization of carbon supports and carbon-supported catalysts; carbon surface chemistry in catalysis; the description of catalytic, photo-catalytic, or electro-catalytic reactions, including the development of new carbon materials such as carbon xerogels, aerogels, or carbon nanotubes; and new carbon-based materials in catalytic or adsorption processes. This is a premier reference for carbon, inorganic, and physical chemists, materials scientists and engineers, chemical engineers, and others.