Shows instructors what mathematics is used at the undergraduate level in various parts of economics. Separate sections provide students with opportunities to apply their mathematics in relevant economics contexts. Brings together many different mathematics applications to such varied economics topics.
Mathematics for Economists with Applications provides detailed coverage of the mathematical techniques essential for undergraduate and introductory graduate work in economics, business and finance. Beginning with linear algebra and matrix theory, the book develops the techniques of univariate and multivariate calculus used in economics, proceeding to discuss the theory of optimization in detail. Integration, differential and difference equations are considered in subsequent chapters. Uniquely, the book also features a discussion of statistics and probability, including a study of the key distributions and their role in hypothesis testing. Throughout the text, large numbers of new and insightful examples and an extensive use of graphs explain and motivate the material. Each chapter develops from an elementary level and builds to more advanced topics, providing logical progression for the student, and enabling instructors to prescribe material to the required level of the course. With coverage substantial in depth as well as breadth, and including a companion website at www.routledge.com/cw/bergin, containing exercises related to the worked examples from each chapter of the book, Mathematics for Economists with Applications contains everything needed to understand and apply the mathematical methods and practices fundamental to the study of economics.
This text offers a presentation of the mathematics required to tackle problems in economic analysis. After a review of the fundamentals of sets, numbers, and functions, it covers limits and continuity, the calculus of functions of one variable, linear algebra, multivariate calculus, and dynamics.
There are many mathematics textbooks on real analysis, but they focus on topics not readily helpful for studying economic theory or they are inaccessible to most graduate students of economics. Real Analysis with Economic Applications aims to fill this gap by providing an ideal textbook and reference on real analysis tailored specifically to the concerns of such students. The emphasis throughout is on topics directly relevant to economic theory. In addition to addressing the usual topics of real analysis, this book discusses the elements of order theory, convex analysis, optimization, correspondences, linear and nonlinear functional analysis, fixed-point theory, dynamic programming, and calculus of variations. Efe Ok complements the mathematical development with applications that provide concise introductions to various topics from economic theory, including individual decision theory and games, welfare economics, information theory, general equilibrium and finance, and intertemporal economics. Moreover, apart from direct applications to economic theory, his book includes numerous fixed point theorems and applications to functional equations and optimization theory. The book is rigorous, but accessible to those who are relatively new to the ways of real analysis. The formal exposition is accompanied by discussions that describe the basic ideas in relatively heuristic terms, and by more than 1,000 exercises of varying difficulty. This book will be an indispensable resource in courses on mathematics for economists and as a reference for graduate students working on economic theory.
Essential Mathematics for Economics and Business is established as one of the leading introductory textbooks on mathematics for students of business and economics. Combining a user–friendly approach to mathematics with practical applications to the subjects, the text provides students with a clear and comprehensible guide to mathematics. The fundamental mathematical concepts are explained in a simple and accessible style, using a wide selection of worked examples, progress exercises and real–world applications. New to this Edition Fully updated text with revised worked examples and updated material on Excel and Powerpoint New exercises in mathematics and its applications to give further clarity and practice opportunities Fully updated online material including animations and a new test bank The fourth edition is supported by a companion website at www.wiley.com/college/bradley, which contains: Animations of selected worked examples providing students with a new way of understanding the problems Access to the Maple T.A. test bank, which features over 500 algorithmic questions Further learning material, applications, exercises and solutions. Problems in context studies, which present the mathematics in a business or economics framework. Updated PowerPoint slides, Excel problems and solutions. "The text is aimed at providing an introductory-level exposition of mathematical methods for economics and business students. In terms of level, pace, complexity of examples and user-friendly style the text is excellent - it genuinely recognises and meets the needs of students with minimal maths background." —Colin Glass, Emeritus Professor, University of Ulster "One of the major strengths of this book is the range of exercises in both drill and applications. Also the 'worked examples' are excellent; they provide examples of the use of mathematics to realistic problems and are easy to follow." —Donal Hurley, formerly of University College Cork "The most comprehensive reader in this topic yet, this book is an essential aid to the avid economist who loathes mathematics!" —Amazon.co.uk
Mathematics has become indispensable in the modelling of economics, finance, business and management. Without expecting any particular background of the reader, this book covers the following mathematical topics, with frequent reference to applications in economics and finance: functions, graphs and equations, recurrences (difference equations), differentiation, exponentials and logarithms, optimisation, partial differentiation, optimisation in several variables, vectors and matrices, linear equations, Lagrange multipliers, integration, first-order and second-order differential equations. The stress is on the relation of maths to economics, and this is illustrated with copious examples and exercises to foster depth of understanding. Each chapter has three parts: the main text, a section of further worked examples and a summary of the chapter together with a selection of problems for the reader to attempt. For students of economics, mathematics, or both, this book provides an introduction to mathematical methods in economics and finance that will be welcomed for its clarity and breadth.
1. Introduction -- 2. Sequences, series, finance -- 3. Relations, mappings, functions of a real variable -- 4. Differentiation -- 5. Integration -- 6. Vectors -- 7. Matrices and determinants -- 8. Linear equations and inequalities -- 9. Linear programming -- 10. Eigenvalue problems and quadratic forms -- 11. Functions of several variables -- 12. Differential equations and difference equations.
Providing an introduction to mathematical analysis as it applies to economic theory and econometrics, this book bridges the gap that has separated the teaching of basic mathematics for economics and the increasingly advanced mathematics demanded in economics research today. Dean Corbae, Maxwell B. Stinchcombe, and Juraj Zeman equip students with the knowledge of real and functional analysis and measure theory they need to read and do research in economic and econometric theory. Unlike other mathematics textbooks for economics, An Introduction to Mathematical Analysis for Economic Theory and Econometrics takes a unified approach to understanding basic and advanced spaces through the application of the Metric Completion Theorem. This is the concept by which, for example, the real numbers complete the rational numbers and measure spaces complete fields of measurable sets. Another of the book's unique features is its concentration on the mathematical foundations of econometrics. To illustrate difficult concepts, the authors use simple examples drawn from economic theory and econometrics. Accessible and rigorous, the book is self-contained, providing proofs of theorems and assuming only an undergraduate background in calculus and linear algebra. Begins with mathematical analysis and economic examples accessible to advanced undergraduates in order to build intuition for more complex analysis used by graduate students and researchers Takes a unified approach to understanding basic and advanced spaces of numbers through application of the Metric Completion Theorem Focuses on examples from econometrics to explain topics in measure theory