Applications of Finite Fields

Applications of Finite Fields

Author: Alfred J. Menezes

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 229

ISBN-13: 1475722265

DOWNLOAD EBOOK

The theory of finite fields, whose origins can be traced back to the works of Gauss and Galois, has played a part in various branches in mathematics. Inrecent years we have witnessed a resurgence of interest in finite fields, and this is partly due to important applications in coding theory and cryptography. The purpose of this book is to introduce the reader to some of these recent developments. It should be of interest to a wide range of students, researchers and practitioners in the disciplines of computer science, engineering and mathematics. We shall focus our attention on some specific recent developments in the theory and applications of finite fields. While the topics selected are treated in some depth, we have not attempted to be encyclopedic. Among the topics studied are different methods of representing the elements of a finite field (including normal bases and optimal normal bases), algorithms for factoring polynomials over finite fields, methods for constructing irreducible polynomials, the discrete logarithm problem and its implications to cryptography, the use of elliptic curves in constructing public key cryptosystems, and the uses of algebraic geometry in constructing good error-correcting codes. To limit the size of the volume we have been forced to omit some important applications of finite fields. Some of these missing applications are briefly mentioned in the Appendix along with some key references.


Finite Fields

Finite Fields

Author: Rudolf Lidl

Publisher: Cambridge University Press

Published: 1997

Total Pages: 784

ISBN-13: 9780521392310

DOWNLOAD EBOOK

This book is devoted entirely to the theory of finite fields.


Finite Fields and Applications

Finite Fields and Applications

Author: Gary L. Mullen

Publisher: American Mathematical Soc.

Published: 2007

Total Pages: 190

ISBN-13: 0821844180

DOWNLOAD EBOOK

Finite fields Combinatorics Algebraic coding theory Cryptography Background in number theory and abstract algebra Hints for selected exercises References Index.


Handbook of Finite Fields

Handbook of Finite Fields

Author: Gary L. Mullen

Publisher: CRC Press

Published: 2013-06-17

Total Pages: 1048

ISBN-13: 1439873828

DOWNLOAD EBOOK

Poised to become the leading reference in the field, the Handbook of Finite Fields is exclusively devoted to the theory and applications of finite fields. More than 80 international contributors compile state-of-the-art research in this definitive handbook. Edited by two renowned researchers, the book uses a uniform style and format throughout and


Finite Fields: Theory and Computation

Finite Fields: Theory and Computation

Author: Igor Shparlinski

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 532

ISBN-13: 940159239X

DOWNLOAD EBOOK

This book is mainly devoted to some computational and algorithmic problems in finite fields such as, for example, polynomial factorization, finding irreducible and primitive polynomials, the distribution of these primitive polynomials and of primitive points on elliptic curves, constructing bases of various types and new applications of finite fields to other areas of mathematics. For completeness we in clude two special chapters on some recent advances and applications of the theory of congruences (optimal coefficients, congruential pseudo-random number gener ators, modular arithmetic, etc.) and computational number theory (primality testing, factoring integers, computation in algebraic number theory, etc.). The problems considered here have many applications in Computer Science, Cod ing Theory, Cryptography, Numerical Methods, and so on. There are a few books devoted to more general questions, but the results contained in this book have not till now been collected under one cover. In the present work the author has attempted to point out new links among different areas of the theory of finite fields. It contains many very important results which previously could be found only in widely scattered and hardly available conference proceedings and journals. In particular, we extensively review results which originally appeared only in Russian, and are not well known to mathematicians outside the former USSR.


Combinatorics and Finite Fields

Combinatorics and Finite Fields

Author: Kai-Uwe Schmidt

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2019-07-08

Total Pages: 459

ISBN-13: 3110641968

DOWNLOAD EBOOK

Combinatorics and finite fields are of great importance in modern applications such as in the analysis of algorithms, in information and communication theory, and in signal processing and coding theory. This book contains survey articles on topics such as difference sets, polynomials, and pseudorandomness.


Lectures on Finite Fields

Lectures on Finite Fields

Author: Xiang-dong Hou

Publisher: American Mathematical Soc.

Published: 2018-06-07

Total Pages: 242

ISBN-13: 1470442892

DOWNLOAD EBOOK

The theory of finite fields encompasses algebra, combinatorics, and number theory and has furnished widespread applications in other areas of mathematics and computer science. This book is a collection of selected topics in the theory of finite fields and related areas. The topics include basic facts about finite fields, polynomials over finite fields, Gauss sums, algebraic number theory and cyclotomic fields, zeros of polynomials over finite fields, and classical groups over finite fields. The book is mostly self-contained, and the material covered is accessible to readers with the knowledge of graduate algebra; the only exception is a section on function fields. Each chapter is supplied with a set of exercises. The book can be adopted as a text for a second year graduate course or used as a reference by researchers.


Finite Fields for Computer Scientists and Engineers

Finite Fields for Computer Scientists and Engineers

Author: Robert J. McEliece

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 212

ISBN-13: 1461319838

DOWNLOAD EBOOK

This book developed from a course on finite fields I gave at the University of Illinois at Urbana-Champaign in the Spring semester of 1979. The course was taught at the request of an exceptional group of graduate students (includ ing Anselm Blumer, Fred Garber, Evaggelos Geraniotis, Jim Lehnert, Wayne Stark, and Mark Wallace) who had just taken a course on coding theory from me. The theory of finite fields is the mathematical foundation of algebraic coding theory, but in coding theory courses there is never much time to give more than a "Volkswagen" treatment of them. But my 1979 students wanted a "Cadillac" treatment, and this book differs very little from the course I gave in response. Since 1979 I have used a subset of my course notes (correspond ing roughly to Chapters 1-6) as the text for my "Volkswagen" treatment of finite fields whenever I teach coding theory. There is, ironically, no coding theory anywhere in the book! If this book had a longer title it would be "Finite fields, mostly of char acteristic 2, for engineering and computer science applications. " It certainly does not pretend to cover the general theory of finite fields in the profound depth that the recent book of Lidl and Neidereitter (see the Bibliography) does.


Computational and Algorithmic Problems in Finite Fields

Computational and Algorithmic Problems in Finite Fields

Author: Igor Shparlinski

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 253

ISBN-13: 940111806X

DOWNLOAD EBOOK

This volume presents an exhaustive treatment of computation and algorithms for finite fields. Topics covered include polynomial factorization, finding irreducible and primitive polynomials, distribution of these primitive polynomials and of primitive points on elliptic curves, constructing bases of various types, and new applications of finite fields to other araes of mathematics. For completeness, also included are two special chapters on some recent advances and applications of the theory of congruences (optimal coefficients, congruential pseudo-random number generators, modular arithmetic etc.), and computational number theory (primality testing, factoring integers, computing in algebraic number theory, etc.) The problems considered here have many applications in computer science, coding theory, cryptography, number theory and discrete mathematics. The level of discussion presuppose only a knowledge of the basic facts on finite fields, and the book can be recommended as supplementary graduate text. For researchers and students interested in computational and algorithmic problems in finite fields.


Algebraic Curves over a Finite Field

Algebraic Curves over a Finite Field

Author: J. W. P. Hirschfeld

Publisher: Princeton University Press

Published: 2013-03-25

Total Pages: 717

ISBN-13: 1400847419

DOWNLOAD EBOOK

This book provides an accessible and self-contained introduction to the theory of algebraic curves over a finite field, a subject that has been of fundamental importance to mathematics for many years and that has essential applications in areas such as finite geometry, number theory, error-correcting codes, and cryptology. Unlike other books, this one emphasizes the algebraic geometry rather than the function field approach to algebraic curves. The authors begin by developing the general theory of curves over any field, highlighting peculiarities occurring for positive characteristic and requiring of the reader only basic knowledge of algebra and geometry. The special properties that a curve over a finite field can have are then discussed. The geometrical theory of linear series is used to find estimates for the number of rational points on a curve, following the theory of Stöhr and Voloch. The approach of Hasse and Weil via zeta functions is explained, and then attention turns to more advanced results: a state-of-the-art introduction to maximal curves over finite fields is provided; a comprehensive account is given of the automorphism group of a curve; and some applications to coding theory and finite geometry are described. The book includes many examples and exercises. It is an indispensable resource for researchers and the ideal textbook for graduate students.