Applications of Discrete Mathematics for Understanding Dynamics of Synapses and Networks in Neuroscience

Applications of Discrete Mathematics for Understanding Dynamics of Synapses and Networks in Neuroscience

Author: Caitlyn M. Parmelee

Publisher:

Published: 2016

Total Pages: 131

ISBN-13: 9781339957814

DOWNLOAD EBOOK

Mathematical modeling has broad applications in neuroscience whether we are modeling the dynamics of a single synapse or the dynamics of an entire network of neurons. In Part I, we model vesicle replenishment and release at the photoreceptor synapse to better understand how visual information is processed. In Part II, we explore a simple model of neural networks with the goal of discovering how network structure shapes the behavior of the network.


Mathematical Foundations of Neuroscience

Mathematical Foundations of Neuroscience

Author: G. Bard Ermentrout

Publisher: Springer Science & Business Media

Published: 2010-07-08

Total Pages: 434

ISBN-13: 038787707X

DOWNLOAD EBOOK

Arising from several courses taught by the authors, this book provides a needed overview illustrating how dynamical systems and computational analysis have been used in understanding the types of models that come out of neuroscience.


Algebraic and Combinatorial Computational Biology

Algebraic and Combinatorial Computational Biology

Author: Raina Robeva

Publisher: Academic Press

Published: 2018-10-08

Total Pages: 436

ISBN-13: 0128140690

DOWNLOAD EBOOK

Algebraic and Combinatorial Computational Biology introduces students and researchers to a panorama of powerful and current methods for mathematical problem-solving in modern computational biology. Presented in a modular format, each topic introduces the biological foundations of the field, covers specialized mathematical theory, and concludes by highlighting connections with ongoing research, particularly open questions. The work addresses problems from gene regulation, neuroscience, phylogenetics, molecular networks, assembly and folding of biomolecular structures, and the use of clustering methods in biology. A number of these chapters are surveys of new topics that have not been previously compiled into one unified source. These topics were selected because they highlight the use of technique from algebra and combinatorics that are becoming mainstream in the life sciences. - Integrates a comprehensive selection of tools from computational biology into educational or research programs - Emphasizes practical problem-solving through multiple exercises, projects and spinoff computational simulations - Contains scalable material for use in undergraduate and graduate-level classes and research projects - Introduces the reader to freely-available professional software - Supported by illustrative datasets and adaptable computer code


Introduction to Neural Dynamics and Signal Transmission Delay

Introduction to Neural Dynamics and Signal Transmission Delay

Author: Jianhong Wu

Publisher: Walter de Gruyter

Published: 2001

Total Pages: 200

ISBN-13: 9783110169881

DOWNLOAD EBOOK

In the design of a neural network, either for biological modeling, cognitive simulation, numerical computation or engineering applications, it is important to investigate the network's computational performance which is usually described by the long-term behaviors, called dynamics, of the model equations. The purpose of this book is to give an introduction to the mathematical modeling and analysis of networks of neurons from the viewpoint of dynamical systems.


Neurodynamics

Neurodynamics

Author: Stephen Coombes

Publisher: Springer Nature

Published: 2023-05-09

Total Pages: 513

ISBN-13: 3031219163

DOWNLOAD EBOOK

This book is about the dynamics of neural systems and should be suitable for those with a background in mathematics, physics, or engineering who want to see how their knowledge and skill sets can be applied in a neurobiological context. No prior knowledge of neuroscience is assumed, nor is advanced understanding of all aspects of applied mathematics! Rather, models and methods are introduced in the context of a typical neural phenomenon and a narrative developed that will allow the reader to test their understanding by tackling a set of mathematical problems at the end of each chapter. The emphasis is on mathematical- as opposed to computational-neuroscience, though stresses calculation above theorem and proof. The book presents necessary mathematical material in a digestible and compact form when required for specific topics. The book has nine chapters, progressing from the cell to the tissue, and an extensive set of references. It includes Markov chain models for ions, differential equations for single neuron models, idealised phenomenological models, phase oscillator networks, spiking networks, and integro-differential equations for large scale brain activity, with delays and stochasticity thrown in for good measure. One common methodological element that arises throughout the book is the use of techniques from nonsmooth dynamical systems to form tractable models and make explicit progress in calculating solutions for rhythmic neural behaviour, synchrony, waves, patterns, and their stability. This book was written for those with an interest in applied mathematics seeking to expand their horizons to cover the dynamics of neural systems. It is suitable for a Masters level course or for postgraduate researchers starting in the field of mathematical neuroscience.


Mathematics for Neuroscientists

Mathematics for Neuroscientists

Author: Fabrizio Gabbiani

Publisher: Academic Press

Published: 2017-02-04

Total Pages: 630

ISBN-13: 0128019069

DOWNLOAD EBOOK

Mathematics for Neuroscientists, Second Edition, presents a comprehensive introduction to mathematical and computational methods used in neuroscience to describe and model neural components of the brain from ion channels to single neurons, neural networks and their relation to behavior. The book contains more than 200 figures generated using Matlab code available to the student and scholar. Mathematical concepts are introduced hand in hand with neuroscience, emphasizing the connection between experimental results and theory. - Fully revised material and corrected text - Additional chapters on extracellular potentials, motion detection and neurovascular coupling - Revised selection of exercises with solutions - More than 200 Matlab scripts reproducing the figures as well as a selection of equivalent Python scripts


Brain Dynamics

Brain Dynamics

Author: Hermann Haken

Publisher: Springer Science & Business Media

Published: 2007-12-22

Total Pages: 331

ISBN-13: 3540752382

DOWNLOAD EBOOK

This is an excellent introduction for graduate students and nonspecialists to the field of mathematical and computational neurosciences. The book approaches the subject via pulsed-coupled neural networks, which have at their core the lighthouse and integrate-and-fire models. These allow for highly flexible modeling of realistic synaptic activity, synchronization and spatio-temporal pattern formation. The more advanced pulse-averaged equations are discussed.


Neurodynamics of Cognition and Consciousness

Neurodynamics of Cognition and Consciousness

Author: Leonid I. Perlovsky

Publisher: Springer

Published: 2007-08-26

Total Pages: 369

ISBN-13: 3540732675

DOWNLOAD EBOOK

Experimental evidence in humans and other mammalians indicates that complex neurodynamics is crucial for the emergence of higher-level intelligence. Dynamical neural systems with encoding in limit cycle and non-convergent attractors have gained increasing popularity in the past decade. The role of synchronization, desynchronization, and intermittent synchronization on cognition has been studied extensively by various authors, in particular by authors contributing to the present volume. This book addresses dynamical aspects of brain functions and cognition.


Dynamics of Neural Networks

Dynamics of Neural Networks

Author: Michel J.A.M. van Putten

Publisher: Springer Nature

Published: 2020-12-18

Total Pages: 259

ISBN-13: 3662611848

DOWNLOAD EBOOK

This book treats essentials from neurophysiology (Hodgkin–Huxley equations, synaptic transmission, prototype networks of neurons) and related mathematical concepts (dimensionality reductions, equilibria, bifurcations, limit cycles and phase plane analysis). This is subsequently applied in a clinical context, focusing on EEG generation, ischaemia, epilepsy and neurostimulation. The book is based on a graduate course taught by clinicians and mathematicians at the Institute of Technical Medicine at the University of Twente. Throughout the text, the author presents examples of neurological disorders in relation to applied mathematics to assist in disclosing various fundamental properties of the clinical reality at hand. Exercises are provided at the end of each chapter; answers are included. Basic knowledge of calculus, linear algebra, differential equations and familiarity with MATLAB or Python is assumed. Also, students should have some understanding of essentials of (clinical) neurophysiology, although most concepts are summarized in the first chapters. The audience includes advanced undergraduate or graduate students in Biomedical Engineering, Technical Medicine and Biology. Applied mathematicians may find pleasure in learning about the neurophysiology and clinic essentials applications. In addition, clinicians with an interest in dynamics of neural networks may find this book useful, too.


Neuronal Stochastic Variability: Influences on Spiking Dynamics and Network Activity

Neuronal Stochastic Variability: Influences on Spiking Dynamics and Network Activity

Author: Mark D. McDonnell

Publisher: Frontiers Media SA

Published: 2016-07-18

Total Pages: 158

ISBN-13: 2889198847

DOWNLOAD EBOOK

Stochastic fluctuations are intrinsic to and unavoidable at every stage of neural dynamics. For example, ion channels undergo random conformational changes, neurotransmitter release at synapses is discrete and probabilistic, and neural networks are embedded in spontaneous background activity. The mathematical and computational tool sets contributing to our understanding of stochastic neural dynamics have expanded rapidly in recent years. New theories have emerged detailing the dynamics and computational power of the balanced state in recurrent networks. At the cellular level, novel stochastic extensions to the classical Hodgkin-Huxley model have enlarged our understanding of neuronal dynamics and action potential initiation. Analytical methods have been developed that allow for the calculation of the firing statistics of simplified phenomenological integrate-and-fire models, taking into account adaptation currents or temporal correlations of the noise. This Research Topic is focused on identified physiological/internal noise sources and mechanisms. By "internal", we mean variability that is generated by intrinsic biophysical processes. This includes noise at a range of scales, from ion channels to synapses to neurons to networks. The contributions in this Research Topic introduce innovative mathematical analysis and/or computational methods that relate to empirical measures of neural activity and illuminate the functional role of intrinsic noise in the brain.