The concept of soft computing is still in its initial stages of crystallization. Presently available books on soft computing are merely collections of chapters or articles about different aspects of the field. This book is the first to provide a systematic account of the major concepts and methodologies of soft computing, presenting a unified framework that makes the subject more accessible to students and practitioners. Particularly worthy of note is the inclusion of a wealth of information about neuro-fuzzy, neuro-genetic, fuzzy-genetic and neuro-fuzzy-genetic systems, with many illuminating applications and examples.
This book plays a significant role in improvising human life to a great extent. The new applications of soft computing can be regarded as an emerging field in computer science, automatic control engineering, medicine, biology application, natural environmental engineering, and pattern recognition. Now, the exemplar model for soft computing is human brain. The use of various techniques of soft computing is nowadays successfully implemented in many domestic, commercial, and industrial applications due to the low-cost and very high-performance digital processors and also the decline price of the memory chips. This is the main reason behind the wider expansion of soft computing techniques and its application areas. These computing methods also play a significant role in the design and optimization in diverse engineering disciplines. With the influence and the development of the Internet of things (IoT) concept, the need for using soft computing techniques has become more significant than ever. In general, soft computing methods are closely similar to biological processes than traditional techniques, which are mostly based on formal logical systems, such as sentential logic and predicate logic, or rely heavily on computer-aided numerical analysis. Soft computing techniques are anticipated to complement each other. The aim of these techniques is to accept imprecision, uncertainties, and approximations to get a rapid solution. However, recent advancements in representation soft computing algorithms (fuzzy logic,evolutionary computation, machine learning, and probabilistic reasoning) generate a more intelligent and robust system providing a human interpretable, low-cost, approximate solution. Soft computing-based algorithms have demonstrated great performance to a variety of areas including multimedia retrieval, fault tolerance, system modelling, network architecture, Web semantics, big data analytics, time series, biomedical and health informatics, etc. Soft computing approaches such as genetic programming (GP), support vector machine–firefly algorithm (SVM-FFA), artificial neural network (ANN), and support vector machine–wavelet (SVM–Wavelet) have emerged as powerful computational models. These have also shown significant success in dealing with massive data analysis for large number of applications. All the researchers and practitioners will be highly benefited those who are working in field of computer engineering, medicine, biology application, signal processing, and mechanical engineering. This book is a good collection of state-of-the-art approaches for soft computing-based applications to various engineering fields. It is very beneficial for the new researchers and practitioners working in the field to quickly know the best performing methods. They would be able to compare different approaches and can carry forward their research in the most important area of research which has direct impact on betterment of the human life and health. This book is very useful because there is no book in the market which provides a good collection of state-of-the-art methods of soft computing-based models for multimedia retrieval, fault tolerance, system modelling, network architecture, Web semantics, big data analytics, time series, and biomedical and health informatics.
Presents the latest scholarly research on the concepts, paradigms, and algorithms of computational intelligence and its constituent methodologies, such as evolutionary computation, neural networks, and fuzzy logic. This volume ncludes coverage on a broad range of topics and perspectives such as cloud computing, sampling in optimization, and swarm intelligence.
These volumes constitute the Proceedings of the 6th International Workshop on Soft Computing Applications, or SOFA 2014, held on 24-26 July 2014 in Timisoara, Romania. This edition was organized by the University of Belgrade, Serbia in conjunction with Romanian Society of Control Engineering and Technical Informatics (SRAIT) - Arad Section, The General Association of Engineers in Romania - Arad Section, Institute of Computer Science, Iasi Branch of the Romanian Academy and IEEE Romanian Section. The Soft Computing concept was introduced by Lotfi Zadeh in 1991 and serves to highlight the emergence of computing methodologies in which the accent is on exploiting the tolerance for imprecision and uncertainty to achieve tractability, robustness and low solution cost. Soft computing facilitates the use of fuzzy logic, neurocomputing, evolutionary computing and probabilistic computing in combination, leading to the concept of hybrid intelligent systems. The combination of such intelligent systems tools and a large number of applications introduce a need for a synergy of scientific and technological disciplines in order to show the great potential of Soft Computing in all domains. The conference papers included in these proceedings, published post conference, were grouped into the following area of research: · Image, Text and Signal Processing Intelligent Transportation Modeling and Applications Biomedical Applications Neural Network and Applications Knowledge-Based Technologies for Web Applications, Cloud Computing, Security, Algorithms and Computer Networks Knowledge-Based Technologies Soft Computing Techniques for Time Series Analysis Soft Computing and Fuzzy Logic in Biometrics Fuzzy Applications Theory and Fuzzy Control Business Process Management Methods and Applications in Electrical Engineering The volumes provide useful information to professors, researchers and graduated students in area of soft computing techniques and applications, as they report new research work on challenging issues.
This book bridges the gap between Soft Computing techniques and their applications to complex engineering problems. In each chapter we endeavor to explain the basic ideas behind the proposed applications in an accessible format for readers who may not possess a background in some of the fields. Therefore, engineers or practitioners who are not familiar with Soft Computing methods will appreciate that the techniques discussed go beyond simple theoretical tools, since they have been adapted to solve significant problems that commonly arise in such areas. At the same time, the book will show members of the Soft Computing community how engineering problems are now being solved and handled with the help of intelligent approaches. Highlighting new applications and implementations of Soft Computing approaches in various engineering contexts, the book is divided into 12 chapters. Further, it has been structured so that each chapter can be read independently of the others.
Softcomputing techniques play a vital role in the industry. This book presents several important papers presented by some of the well-known scientists from all over the globe. The main techniques of soft computing presented include ant-colony optimization, artificial immune systems, artificial neural networks, Bayesian models. The book includes various examples and application domains such as bioinformatics, detection of phishing attacks, and fault detection of motors.
This book constitutes the refereed proceedings of the Second International Conference on Soft Computing and its Engineering Applications, icSoftComp 2020, held in Changa, India, in December 2020. Due to the COVID-19 pandemic the conference was held online. The 24 full papers and 4 short papers presented were carefully reviewed and selected from 252 submissions. The papers present recent research on theory and applications in fuzzy computing, neuro computing, and evolutionary computing.
Traditional artificial intelligence (AI) techniques are based around mathematical techniques of symbolic logic, with programming in languages such as Prolog and LISP invented in the 1960s. These are referred to as "crisp" techniques by the soft computing community. The new wave of AI methods seeks inspiration from the world of biology, and is being used to create numerous real-world intelligent systems with the aid of soft computing tools. These new methods are being increasingly taught at the upper end of the curriculum, sometimes as an adjunct to traditional AI courses, and sometimes as a replacement for them. Where a more radical approach is taken and the course is being taught at an introductory level, we have recently published Negnevitsky's book. Karray and Silva will be suitable for the majority of courses which will be found at an advanced level. Karray and de Silva cover the problem of control and intelligent systems design using soft-computing techniques in an integrated manner. They present both theory and applications, including industrial applications, and the book contains numerous worked examples, problems and case studies. Covering the state-of-the-art in soft-computing techniques, the book gives the reader sufficient knowledge to tackle a wide range of complex systems for which traditional techniques are inadequate.
In today’s modernized world, the field of healthcare has seen significant practical innovations with the implementation of computational intelligence approaches and soft computing methods. These two concepts present various solutions to complex scientific problems and imperfect data issues. This has made both very popular in the medical profession. There are still various areas to be studied and improved by these two schemes as healthcare practices continue to develop. Computational Intelligence and Soft Computing Applications in Healthcare Management Science is an essential reference source that discusses the implementation of soft computing techniques and computational methods in the various components of healthcare, telemedicine, and public health. Featuring research on topics such as analytical modeling, neural networks, and fuzzy logic, this book is ideally designed for software engineers, information scientists, medical professionals, researchers, developers, educators, academicians, and students.
This book constitutes the refereed proceedings of the 6th International Conference on Soft Computing in Data Science, SCDS 2021, which was held virtually in November 2021. The 31 revised full papers presented were carefully reviewed and selected from 79 submissions. The papers are organized in topical sections on AI techniques and applications; data analytics and technologies; data mining and image processing; machine & statistical learning.