The present study aims to introduce the notion of bipolar neutrosophic Hamacher aggregation operators and to also provide its application in real life. Then neutrosophic set (NS) can elaborate the incomplete, inconsistent, and indeterminate information, Hamacher aggregation operators, and extended Einstein aggregation operators to the arithmetic and geometric aggregation operators.
The present study aims to introduce the notion of bipolar neutrosophicHamacher aggregation operators and to also provide its application in real life. Then neutrosophic set (NS) can elaborate the incomplete, inconsistent, and indeterminate information, Hamacher aggregation operators, and extended Einstein aggregation operators to the arithmetic and geometric aggregation operators. First, we give the fundamental definition and operations of the neutrosophic set and the bipolar neutrosophic set. Our main focus is on the Hamacher aggregation operators of bipolar neutrosophic, namely, bipolar neutrosophic Hamacher weighted averaging (BNHWA), bipolar neutrosophic Hamacher ordered weighted averaging (BNHOWA), and bipolar neutrosophic Hamacher hybrid averaging (BNHHA) along with their desirable properties. The prime gain of utilizing the suggested methods is that these operators progressively provide total perspective on the issue necessary for the decision makers. These tools provide generalized, increasingly exact, and precise outcomes when compared to the current methods. Finally, as an application, we propose new methods for the multi-criteria group decision-making issues by using the various kinds of bipolar neutrosophic operators with a numerical model. This demonstrates the usefulness and practicality of this proposed approach in real life.
This eleventh volume of Collected Papers includes 90 papers comprising 988 pages on Physics, Artificial Intelligence, Health Issues, Decision Making, Economics, Statistics, written between 2001-2022 by the author alone or in collaboration with the following 84 co-authors (alphabetically ordered) from 19 countries: Abhijit Saha, Abu Sufian, Jack Allen, Shahbaz Ali, Ali Safaa Sadiq, Aliya Fahmi, Atiqa Fakhar, Atiqa Firdous, Sukanto Bhattacharya, Robert N. Boyd, Victor Chang, Victor Christianto, V. Christy, Dao The Son, Debjit Dutta, Azeddine Elhassouny, Fazal Ghani, Fazli Amin, Anirudha Ghosha, Nasruddin Hassan, Hoang Viet Long, Jhulaneswar Baidya, Jin Kim, Jun Ye, Darjan Karabašević, Vasilios N. Katsikis, Ieva Meidutė-Kavaliauskienė, F. Kaymarm, Nour Eldeen M. Khalifa, Madad Khan, Qaisar Khan, M. Khoshnevisan, Kifayat Ullah,, Volodymyr Krasnoholovets, Mukesh Kumar, Le Hoang Son, Luong Thi Hong Lan, Tahir Mahmood, Mahmoud Ismail, Mohamed Abdel-Basset, Siti Nurul Fitriah Mohamad, Mohamed Loey, Mai Mohamed, K. Mohana, Kalyan Mondal, Muhammad Gulfam, Muhammad Khalid Mahmood, Muhammad Jamil, Muhammad Yaqub Khan, Muhammad Riaz, Nguyen Dinh Hoa, Cu Nguyen Giap, Nguyen Tho Thong, Peide Liu, Pham Huy Thong, Gabrijela Popović, Surapati Pramanik, Dmitri Rabounski, Roslan Hasni, Rumi Roy, Tapan Kumar Roy, Said Broumi, Saleem Abdullah, Muzafer Saračević, Ganeshsree Selvachandran, Shariful Alam, Shyamal Dalapati, Housila P. Singh, R. Singh, Rajesh Singh, Predrag S. Stanimirović, Kasan Susilo, Dragiša Stanujkić, Alexandra Şandru, Ovidiu Ilie Şandru, Zenonas Turskis, Yunita Umniyati, Alptekin Ulutaș, Maikel Yelandi Leyva Vázquez, Binyamin Yusoff, Edmundas Kazimieras Zavadskas, Zhao Loon Wang.
In this paper, a definition of quadripartitioned single valued bipolar neutrosophic set (QSVBNS) is introduced as a generalization of both quadripartitioned single valued neutrosophic sets (QSVNS) and bipolar neutrosophic sets (BNS). There is an inherent symmetry in the definition of QSVBNS. Some operations on them are defined and a set theoretic study is accomplished. Various similarity measures and distance measures are defined on QSVBNS. An algorithm relating to multi-criteria decision making problem is presented based on quadripartitioned bipolar weighted similarity measure. Finally, an example is shown to verify the flexibility of the given method and the advantage of considering QSVBNS in place of fuzzy sets and bipolar fuzzy sets.
The LNCS journal Transactions on Rough Sets is devoted to the entire spectrum of rough sets related issues, from logical and mathematical foundations, through all aspects of rough set theory and its applications, such as data mining, knowledge discovery, and intelligent information processing, to relations between rough sets and other approaches to uncertainty, vagueness, and incompleteness, such as fuzzy sets and theory of evidence. Volume XXIII in the series is a continuation of a number of research streams that have grown out of the seminal work of Zdzislaw Pawlak during the first decade of the 21st century.
This seventh volume of Collected Papers includes 70 papers comprising 974 pages on (theoretic and applied) neutrosophics, written between 2013-2021 by the author alone or in collaboration with the following 122 co-authors from 22 countries: Mohamed Abdel-Basset, Abdel-Nasser Hussian, C. Alexander, Mumtaz Ali, Yaman Akbulut, Amir Abdullah, Amira S. Ashour, Assia Bakali, Kousik Bhattacharya, Kainat Bibi, R. N. Boyd, Ümit Budak, Lulu Cai, Cenap Özel, Chang Su Kim, Victor Christianto, Chunlai Du, Chunxin Bo, Rituparna Chutia, Cu Nguyen Giap, Dao The Son, Vinayak Devvrat, Arindam Dey, Partha Pratim Dey, Fahad Alsharari, Feng Yongfei, S. Ganesan, Shivam Ghildiyal, Bibhas C. Giri, Masooma Raza Hashmi, Ahmed Refaat Hawas, Hoang Viet Long, Le Hoang Son, Hongbo Wang, Hongnian Yu, Mihaiela Iliescu, Saeid Jafari, Temitope Gbolahan Jaiyeola, Naeem Jan, R. Jeevitha, Jun Ye, Anup Khan, Madad Khan, Salma Khan, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Darjan Karabašević, Kifayat Ullah, Kishore Kumar P.K., Sujit Kumar De, Prasun Kumar Nayak, Malayalan Lathamaheswari, Luong Thi Hong Lan, Anam Luqman, Luu Quoc Dat, Tahir Mahmood, Hafsa M. Malik, Nivetha Martin, Mai Mohamed, Parimala Mani, Mingcong Deng, Mohammed A. Al Shumrani, Mohammad Hamidi, Mohamed Talea, Kalyan Mondal, Muhammad Akram, Muhammad Gulistan, Farshid Mofidnakhaei, Muhammad Shoaib, Muhammad Riaz, Karthika Muthusamy, Nabeela Ishfaq, Deivanayagampillai Nagarajan, Sumera Naz, Nguyen Dinh Hoa, Nguyen Tho Thong, Nguyen Xuan Thao, Noor ul Amin, Dragan Pamučar, Gabrijela Popović, S. Krishna Prabha, Surapati Pramanik, Priya R, Qiaoyan Li, Yaser Saber, Said Broumi, Saima Anis, Saleem Abdullah, Ganeshsree Selvachandran, Abdulkadir Sengür, Seyed Ahmad Edalatpanah, Shahbaz Ali, Shahzaib Ashraf, Shouzhen Zeng, Shio Gai Quek, Shuangwu Zhu, Shumaiza, Sidra Sayed, Sohail Iqbal, Songtao Shao, Sundas Shahzadi, Dragiša Stanujkić, Željko Stević, Udhayakumar Ramalingam, Zunaira Rashid, Hossein Rashmanlou, Rajkumar Verma, Luige Vlădăreanu, Victor Vlădăreanu, Desmond Jun Yi Tey, Selçuk Topal, Naveed Yaqoob, Yanhui Guo, Yee Fei Gan, Yingcang Ma, Young Bae Jun, Yuping Lai, Hafiz Abdul Wahab, Wei Yang, Xiaohong Zhang, Edmundas Kazimieras Zavadskas, Lemnaouar Zedam.
1. The increasing number of research papers appeared in the last years that either make use of aggregation functions or contribute to its theoretieal study asses its growing importance in the field of Fuzzy Logie and in others where uncertainty and imprecision play a relevant role. Since these papers are pub lished in many journals, few books and several proceedings of conferences, books on aggregation are partieularly welcome. To my knowledge, "Agrega tion Operators. New Trends and Applications" is the first book aiming at generality , and I take it as a honour to write this Foreword in response to the gentle demand of its editors, Radko Mesiar, Tomasa Calvo and Gaspar Mayor. My pleasure also derives from the fact that twenty years aga I was one of the first Spaniards interested in the study of aggregation functions, and this book includes work by several Spanish authors. The book contains nice and relevant original papers, authored by some of the most outstanding researchers in the field, and since it can serve, as the editors point out in the Preface, as a small handbook on aggregation, the book is very useful for those entering the subject for the first time. The book also contains apart dealing with potential areas of application, so it can be helpful in gaining insight on the future developments.
This paper proposes a hesitant bipolar-valued neutrosophic set (HBVNS) based on the combination of bipolar neutrosophic sets and hesitant fuzzy sets. The proposed set generalizes the notions of fuzzy set, intuitionistic fuzzy set, hesitant fuzzy set, single-valued neutrosophic set, single-valued neutrosophic hesitant fuzzy set, bipolar fuzzy set and bipolar neutrosophic set. Further, we define the basic operational laws, union, intersection and complement for hesitant bipolar -valued neutrosophic elements (HBVNEs) and study its associated properties. Some relevant examples are also given to provide a better understanding of the proposed concept. Two aggregation operators are developed based HBVNS which are the hesitant bipolar-valued neutrosophic weighted averaging (HBVNWA) and the hesitant bipolar-valued neutrosophic weighted geometric (HBVNWG). A decision making method is developed based on HBVNS and the proposed HBVNWA and HBVNWG operators. Finally, an illustrative example is given to show the applicability of the proposed decision making method and a comparative analysis with the existing methods is also provided.
This book presents a collection of recent research on topics related to Pythagorean fuzzy set, dealing with dynamic and complex decision-making problems. It discusses a wide range of theoretical and practical information to the latest research on Pythagorean fuzzy sets, allowing readers to gain an extensive understanding of both fundamentals and applications. It aims at solving various decision-making problems such as medical diagnosis, pattern recognition, construction problems, technology selection, and more, under the Pythagorean fuzzy environment, making it of much value to students, researchers, and professionals associated with the field.