This book covers fundamental aspects of spatial data modelling specifically on the aspect of three-dimensional (3D) modelling and structuring. Realisation of "true" 3D GIS spatial system needs a lot of effort, and the process is taking place in various research centres and universities in some countries. The development of spatial data modelling for 3D objects is the focus of this book.
Archaeological 3D GIS provides archaeologists with a guide to explore and understand the unprecedented opportunities for collecting, visualising, and analysing archaeological datasets in three dimensions. With platforms allowing archaeologists to link, query, and analyse in a virtual, georeferenced space information collected by different specialists, the book highlights how it is possible to re-think aspects of theory and practice which relate to GIS. It explores which questions can be addressed in such a new environment and how they are going to impact the way we interpret the past. By using material from several international case studies such as Pompeii, Çatalhöyük, as well as prehistoric and protohistoric sites in Southern Scandinavia, this book discusses the use of the third dimension in support of archaeological practice. This book will be essential for researchers and scholars who focus on archaeology and spatial analysis, and is designed and structured to serve as a textbook for GIS and digital archaeology courses. The Open Access version of this book, available at www.taylorfrancis.com, has been made available under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 license.
Render three-dimensional data and maps with ease. Written as a self-study workbook, Introduction to 3D Data demystifies the sometimes confusing controls and procedures required for 3D modeling using software packages such as ArcGIS 3D Analyst and Google Earth. Going beyond the manual that comes with the software, this profusely illustrated guide explains how to use ESRI’s ArcGIS 3D Analyst to model and analyze three-dimensional geographical surfaces, create 3D data, and produce displays ranging from topographically realistic maps to 3D scenes and spherical earth-like views. The engagingly user-friendly instruction: • Walks you through basic concepts of 3D data, progressing to more advanced techniques such as calculating surface area and volume • Introduces you to two major software packages: ArcGIS 3D Analyst (including ArcScene and ArcGlobe) and Google Earth • Reinforces your understanding through in-depth discussions with over thirty hands-on exercises and tutorial datasets on the support website at www.wiley/college/kennedy • Helps you apply the theory with real-world applications Whether you’re a student or professional in geology, landscape architecture, transportation system planning, hydrology, or a related field, Introduction to 3D Data will quickly turn you into a power user of 3D GIS.
This is a hands-on book about ArcGIS that you work with as much as read. By the end, using Learn ArcGIS lessons, you'll be able to say you made a story map, conducted geographic analysis, edited geographic data, worked in a 3D web scene, built a 3D model of Venice, and more.
Geosimulation is hailed as ‘the next big thing’ in geographic modelling for urban studies. This book presents readers with an overview of this new and innovative field by introducing the spatial modelling environment and describing the latest research and development using cellular automata and multi-agent systems. Extensive case studies and working code is available from an associated website which demonstrate the technicalities of geosimulation, and provide readers with the tools to carry out their own modelling and testing. The first book to treat urban geosimulation explicitly, integrating socio-economic and environmental modelling approaches Provides the reader with a sound theoretical base in the science of geosimulation as well as applied material on the construction of geosimulation models Cross-references to an author-maintained associated website with downloadable working code for readers to apply the models presented in the book Visit the Author's Website for further information on Geosimulation, Geographic Automata Systems and Geographic Automata Software http://www.geosimulationbook.com
Professionals involved in the planning, design, operation, and construction of water, wastewater, and stormwater systems need to understand the productivity-enhancing applications of GIS. Inspired by an ASCE-sponsored continuing education course taught by the author, GIS Applications for Water, Wastewater, and Stormwater Systems focuses on t
This is a hands-on book about ArcGIS that you work with as much as read. By the end, using Learn ArcGIS lessons, you'll be able to say you made a story map, conducted geographic analysis, edited geographic data, worked in a 3D web scene, built a 3D model of Venice, and more.
Urban spaces are being called upon to develop a capacity for resilience and sustainability in order to meet the major challenges they face. To achieve such a goal, a practical development framework must be implemented in order to take advantage of the technological innovations that characterize the field of construction and urban engineering. Today, multi-scale BIM is bringing about significant changes that are redefining the paradigms of urban management. It facilitates simulations of the sustainability of urban spaces with respect to several criteria; most notably relating to energy, the economy and the environment. Building Information Modeling for a Smart and Sustainable Urban Space proposes a theoretical and practical framework for implementing BIM models for the creation of sustainable and intelligent urban spaces. It addresses the issues of acquisition, modeling, interoperability, and BIM and GIS integration for the production of BIM models. Case studies are presented, providing a practical dimension that demonstrates the production process of the urban model and its contribution to multiscale simulations, particularly in real estate evaluation and urban renewal.
The authors explore and explain current techniques for handling the specialised data that describes geographical phenomena in a study that will be of great value to computer scientists and geographers working with spatial databases.