Cardinal Spline Interpolation

Cardinal Spline Interpolation

Author: I. J. Schoenberg

Publisher: SIAM

Published: 1973-01-01

Total Pages: 131

ISBN-13: 9781611970555

DOWNLOAD EBOOK

As this monograph shows, the purpose of cardinal spline interpolation is to bridge the gap between the linear spline and the cardinal series. The author explains cardinal spline functions, the basic properties of B-splines, including B- splines with equidistant knots and cardinal splines represented in terms of B-splines, and exponential Euler splines, leading to the most important case and central problem of the book-- cardinal spline interpolation, with main results, proofs, and some applications. Other topics discussed include cardinal Hermite interpolation, semi-cardinal interpolation, finite spline interpolation problems, extremum and limit properties, equidistant spline interpolation applied to approximations of Fourier transforms, and the smoothing of histograms.


Handbook of Splines

Handbook of Splines

Author: Gheorghe Micula

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 622

ISBN-13: 9401153388

DOWNLOAD EBOOK

The purpose of this book is to give a comprehensive introduction to the theory of spline functions, together with some applications to various fields, emphasizing the significance of the relationship between the general theory and its applications. At the same time, the goal of the book is also to provide new ma terial on spline function theory, as well as a fresh look at old results, being written for people interested in research, as well as for those who are interested in applications. The theory of spline functions and their applications is a relatively recent field of applied mathematics. In the last 50 years, spline function theory has undergone a won derful development with many new directions appearing during this time. This book has its origins in the wish to adequately describe this development from the notion of 'spline' introduced by 1. J. Schoenberg (1901-1990) in 1946, to the newest recent theories of 'spline wavelets' or 'spline fractals'. Isolated facts about the functions now called 'splines' can be found in the papers of L. Euler, A. Lebesgue, G. Birkhoff, J.


SIAM Journal on Numerical Analysis

SIAM Journal on Numerical Analysis

Author:

Publisher:

Published: 1975

Total Pages: 494

ISBN-13:

DOWNLOAD EBOOK

Contains research articles on the development and analysis of numerical methods, including their convergence, stability, and error analysis as well as related results in functional analysis and approximation theory. Computational experiments and new types of numerical applications are also included.