Annular Two-Phase Flow

Annular Two-Phase Flow

Author: Geoffrey Hewitt

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 327

ISBN-13: 1483285235

DOWNLOAD EBOOK

Annular Two-Phase Flow presents the wide range of industrial applications of annular two-phase flow regimes. This book discusses the fluid dynamics and heat transfer aspects of the flow pattern. Organized into 12 chapters, this book begins with an overview of the classification of the various types of interface distribution observed in practice. This text then examines the various regimes of two-phase flow with emphasis on the regions of occurrence of the annular flow regime. Other chapters consider the single momentum and energy balances, which illustrate the differences and analogies between single- and two-phase flows. This book discusses as well the simple modes for annular flow with consideration to the calculation of the profile of shear stress in the liquid film. The final chapter deals with the techniques that are developed for the measurement of flow pattern, entrainment, and film thickness. This book is a valuable resource for chemical engineers.


Modelling and Experimentation in Two-Phase Flow

Modelling and Experimentation in Two-Phase Flow

Author: Volfango Bertola

Publisher: Springer

Published: 2014-05-04

Total Pages: 433

ISBN-13: 3709125383

DOWNLOAD EBOOK

This is an up-to-date review of recent advances in the study of two-phase flows, with focus on gas-liquid flows, liquid-liquid flows, and particle transport in turbulent flows. The book is divided into several chapters, which after introducing basic concepts lead the reader through a more complex treatment of the subjects. The reader will find an extensive review of both the older and the more recent literature, with abundance of formulas, correlations, graphs and tables. A comprehensive (though non exhaustive) list of bibliographic references is provided at the end of each chapter. The volume is especially indicated for researchers who would like to carry out experimental, theoretical or computational work on two-phase flows, as well as for professionals who wish to learn more about this topic.


Multiphase Flow Dynamics 2

Multiphase Flow Dynamics 2

Author: Nikolay Ivanov Kolev

Publisher: Springer Science & Business Media

Published: 2005-08-15

Total Pages: 702

ISBN-13: 3540268308

DOWNLOAD EBOOK

Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. In its third extended edition this book contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations. This book provides a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present second volume the mechanical and thermal interactions in multiphase dynamics are provided. This third edition includes various updates, extensions, improvements and corrections.


Multiphase Flow Metering

Multiphase Flow Metering

Author: Gioia Falcone

Publisher: Elsevier

Published: 2009-11-16

Total Pages: 340

ISBN-13: 0080558844

DOWNLOAD EBOOK

Over the last two decades the development, evaluation and use of MFM systems has been a major focus for the Oil & Gas industry worldwide. Since the early 1990's, when the first commercial meters started to appear, there have been around 2,000 field applications of MFM for field allocation, production optimisation and well testing. So far, many alternative metering systems have been developed, but none of them can be referred to as generally applicable or universally accurate. Both established and novel technologies suitable to measure the flow rates of gas, oil and water in a three-phase flow are reviewed and assessed within this book. Those technologies already implemented in the various commercial meters are evaluated in terms of operational and economical advantages or shortcomings from an operator point of view. The lessons learned about the practical reliability, accuracy and use of the available technology is discussed. The book suggests where the research to develop the next generation of MFM devices will be focused in order to meet the as yet unsolved problems. The book provides a critical and independent review of the current status and future trends of MFM, supported by the authors' strong background on multiphase flow and by practical examples. These are based on the authors' direct experience on MFM, gained over many years of research in connection with both operators and service companies. As there are currently no books on the subject of Multiphase Flow Metering for the Oil & Gas industry, this book will fill in the gap and provide a theoretical and practical reference for professionals, academics, and students.* Written by leading scholars and industry experts of international standing* Includes strong coverage of the theoretical background, yet also provides practical examples and current developments* Provides practical reference for professionals, students and academics


Effect of Pipe Diameter on Horizontal Annular Two-phase Flow

Effect of Pipe Diameter on Horizontal Annular Two-phase Flow

Author: Lawrence Robert Williams

Publisher:

Published: 1990

Total Pages: 322

ISBN-13:

DOWNLOAD EBOOK

The effect of pipe diameter on horizontal annular flow is examined. Measurements of the local film height, the local droplet flux, the local velocity, and the entrained fraction for annular flow in a 9.53 cm horizontal pipe have been obtained. The measurements are compared with the results from previous investigators for horizontal annular flow in pipes with diameters of 2.54 cm and 5.08 cm. A new large scale two-phase flow facility has been designed and constructed. The facility has the ability to incline a 26.5 m pipe at angles between positive and minus 2.5 degrees from the horizontal. Local film height measurements show that the film distribution becomes increasingly asymmetric with increasing pipe diameter. The effect of pipe diameter on the asymmetries of the liquid film distribution is predicted approximately by a Froude number. At Froude numbers below 50, the liquid is stratified as a pool at the pipe bottom. A turbulent diffusion model developed by a co-researcher for the droplet concentration distribution is in good agreement with measurements at low gas velocities and low droplet concentrations. At higher droplet concentrations, velocity measurements suggest the existence of a secondary flow in the gas which inhibits droplet settling. Entrainment correlations developed from experiments in small diameter pipes, over predict the entrained fraction in large diameter pipes. A generalized entrainment correlation based on an equilibrium rate balance between the rate of atomization of droplets from the liquid film and the rate of deposition of droplets back to the liquid film is developed. The correlation is easily interpreted for two extremes of the liquid film distribution. When the film is distributed uniformly around the pipe wall, the entrainment relation reduces to a form developed by previous researchers. For conditions where the liquid film is stratified as a pool at the pipe bottom, a new entrainment relation is developed which is in good agreement with the results.


An Overview of Heat Transfer Phenomena

An Overview of Heat Transfer Phenomena

Author: Salim Newaz Kazi

Publisher: IntechOpen

Published: 2012-10-31

Total Pages: 540

ISBN-13: 9789535108276

DOWNLOAD EBOOK

In the wake of energy crisis due to rapid growth of industries, urbanization, transportation, and human habit, the efficient transfer of heat could play a vital role in energy saving. Industries, household requirements, offices, transportation are all dependent on heat exchanging equipment. Considering these, the present book has incorporated different sections related to general aspects of heat transfer phenomena, convective heat transfer mode, boiling and condensation, heat transfer to two phase flow and heat transfer augmentation by different means.


Improved Two-Equation K-Omega Turbulence Models for Aerodynamic Flows

Improved Two-Equation K-Omega Turbulence Models for Aerodynamic Flows

Author: National Aeronautics and Space Adm Nasa

Publisher:

Published: 2018-10-18

Total Pages: 38

ISBN-13: 9781728958446

DOWNLOAD EBOOK

Two new versions of the k-omega two-equation turbulence model will be presented. The new Baseline (BSL) model is designed to give results similar to those of the original k-omega model of Wilcox, but without its strong dependency on arbitrary freestream values. The BSL model is identical to the Wilcox model in the inner 50 percent of the boundary-layer but changes gradually to the high Reynolds number Jones-Launder k-epsilon model (in a k-omega formulation) towards the boundary-layer edge. The new model is also virtually identical to the Jones-Lauder model for free shear layers. The second version of the model is called Shear-Stress Transport (SST) model. It is based on the BSL model, but has the additional ability to account for the transport of the principal shear stress in adverse pressure gradient boundary-layers. The model is based on Bradshaw's assumption that the principal shear stress is proportional to the turbulent kinetic energy, which is introduced into the definition of the eddy-viscosity. Both models are tested for a large number of different flowfields. The results of the BSL model are similar to those of the original k-omega model, but without the undesirable freestream dependency. The predictions of the SST model are also independent of the freestream values and show excellent agreement with experimental data for adverse pressure gradient boundary-layer flows. Menter, Florian R. Ames Research Center RTOP 505-59-40...


Thermo-fluid Dynamics of Two-Phase Flow

Thermo-fluid Dynamics of Two-Phase Flow

Author: Mamoru Ishii

Publisher: Springer Science & Business Media

Published: 2006-09-28

Total Pages: 462

ISBN-13: 0387291873

DOWNLOAD EBOOK

This book has been written for graduate students, scientists and engineers who need in-depth theoretical foundations to solve two-phase problems in various technological systems. Based on extensive research experiences focused on the fundamental physics of two-phase flow, the authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to a variety of scenarios, including nuclear reactor transient and accident analysis, energy systems, power generation systems and even space propulsion.