Algorithmic Graph Theory and Perfect Graphs

Algorithmic Graph Theory and Perfect Graphs

Author: Martin Charles Golumbic

Publisher: Elsevier

Published: 2014-05-10

Total Pages: 307

ISBN-13: 1483271978

DOWNLOAD EBOOK

Algorithmic Graph Theory and Perfect Graphs provides an introduction to graph theory through practical problems. This book presents the mathematical and algorithmic properties of special classes of perfect graphs. Organized into 12 chapters, this book begins with an overview of the graph theoretic notions and the algorithmic design. This text then examines the complexity analysis of computer algorithm and explains the differences between computability and computational complexity. Other chapters consider the parameters and properties of a perfect graph and explore the class of perfect graphs known as comparability graph or transitively orientable graphs. This book discusses as well the two characterizations of triangulated graphs, one algorithmic and the other graph theoretic. The final chapter deals with the method of performing Gaussian elimination on a sparse matrix wherein an arbitrary choice of pivots may result in the filling of some zero positions with nonzeros. This book is a valuable resource for mathematicians and computer scientists.


Threshold Graphs and Related Topics

Threshold Graphs and Related Topics

Author: N.V.R. Mahadev

Publisher: Elsevier

Published: 1995-09-13

Total Pages: 559

ISBN-13: 0080543006

DOWNLOAD EBOOK

Threshold graphs have a beautiful structure and possess many important mathematical properties. They have applications in many areas including computer science and psychology. Over the last 20 years the interest in threshold graphs has increased significantly, and the subject continues to attract much attention.The book contains many open problems and research ideas which will appeal to graduate students and researchers interested in graph theory. But above all Threshold Graphs and Related Topics provides a valuable source of information for all those working in this field.


Submodular Functions and Electrical Networks

Submodular Functions and Electrical Networks

Author: H. Narayanan

Publisher: Elsevier

Published: 1997-05

Total Pages: 682

ISBN-13: 0444825231

DOWNLOAD EBOOK

There is a strong case for electrical network topologists and submodular function theorists being aware of each other's fields. Presenting a topological approach to electrical network theory, this book demonstrates the strong links that exist between submodular functions and electrical networks. The book contains: . a detailed discussion of graphs, matroids, vector spaces and the algebra of generalized minors, relevant to network analysis (particularly to the construction of efficient circuit simulators) . a detailed discussion of submodular function theory in its own right; topics covered include, various operations, dualization, convolution and Dilworth truncation as well as the related notions of prinicpal partition and principal lattice of partitions. In order to make the book useful to a wide audience, the material on electrical networks and that on submodular functions is presented independently of each other. The hybrid rank problem, the bridge between (topological) electrical network theory and submodular functions, is covered in the final chapter. The emphasis in the book is on low complexity algorithms, particularly based on bipartite graphs. The book is intended for self-study and is recommended to designers of VLSI algorithms. More than 300 problems, almost all of them with solutions, are included at the end of each chapter.


Quo Vadis, Graph Theory?

Quo Vadis, Graph Theory?

Author: J. Gimbel

Publisher: Elsevier

Published: 1993-03-17

Total Pages: 407

ISBN-13: 0080867952

DOWNLOAD EBOOK

Graph Theory (as a recognized discipline) is a relative newcomer to Mathematics. The first formal paper is found in the work of Leonhard Euler in 1736. In recent years the subject has grown so rapidly that in today's literature, graph theory papers abound with new mathematical developments and significant applications.As with any academic field, it is good to step back occasionally and ask Where is all this activity taking us?, What are the outstanding fundamental problems?, What are the next important steps to take?. In short, Quo Vadis, Graph Theory?. The contributors to this volume have together provided a comprehensive reference source for future directions and open questions in the field.


Submodular Functions and Optimization

Submodular Functions and Optimization

Author: Satoru Fujishige

Publisher: Elsevier

Published: 2005-07-26

Total Pages: 411

ISBN-13: 008046162X

DOWNLOAD EBOOK

It has widely been recognized that submodular functions play essential roles in efficiently solvable combinatorial optimization problems. Since the publication of the 1st edition of this book fifteen years ago, submodular functions have been showing further increasing importance in optimization, combinatorics, discrete mathematics, algorithmic computer science, and algorithmic economics, and there have been made remarkable developments of theory and algorithms in submodular functions. The 2nd edition of the book supplements the 1st edition with a lot of remarks and with new two chapters: "Submodular Function Minimization" and "Discrete Convex Analysis." The present 2nd edition is still a unique book on submodular functions, which is essential to students and researchers interested in combinatorial optimization, discrete mathematics, and discrete algorithms in the fields of mathematics, operations research, computer science, and economics. - Self-contained exposition of the theory of submodular functions - Selected up-to-date materials substantial to future developments - Polyhedral description of Discrete Convex Analysis - Full description of submodular function minimization algorithms - Effective insertion of figures - Useful in applied mathematics, operations research, computer science, and economics


Recent Results in the Theory of Graph Spectra

Recent Results in the Theory of Graph Spectra

Author: D.M. Cvetkovic

Publisher: Elsevier

Published: 1988-01-01

Total Pages: 319

ISBN-13: 0080867766

DOWNLOAD EBOOK

The purpose of this volume is to review the results in spectral graph theory which have appeared since 1978.The problem of characterizing graphs with least eigenvalue -2 was one of the original problems of spectral graph theory. The techniques used in the investigation of this problem have continued to be useful in other contexts including forbidden subgraph techniques as well as geometric methods involving root systems. In the meantime, the particular problem giving rise to these methods has been solved almost completely. This is indicated in Chapter 1.The study of various combinatorial objects (including distance regular and distance transitive graphs, association schemes, and block designs) have made use of eigenvalue techniques, usually as a method to show the nonexistence of objects with certain parameters. The basic method is to construct a graph which contains the structure of the combinatorial object and then to use the properties of the eigenvalues of the graph. Methods of this type are given in Chapter 2.Several topics have been included in Chapter 3, including the relationships between the spectrum and automorphism group of a graph, the graph isomorphism and the graph reconstruction problem, spectra of random graphs, and the Shannon capacity problem. Some graph polynomials related to the characteristic polynomial are described in Chapter 4. These include the matching, distance, and permanental polynomials. Applications of the theory of graph spectra to Chemistry and other branches of science are described from a mathematical viewpoint in Chapter 5. The last chapter is devoted to the extension of the theory of graph spectra to infinite graphs.


The Steiner Tree Problem

The Steiner Tree Problem

Author: F.K. Hwang

Publisher: Elsevier

Published: 1992-10-20

Total Pages: 353

ISBN-13: 0080867936

DOWNLOAD EBOOK

The Steiner problem asks for a shortest network which spans a given set of points. Minimum spanning networks have been well-studied when all connections are required to be between the given points. The novelty of the Steiner tree problem is that new auxiliary points can be introduced between the original points so that a spanning network of all the points will be shorter than otherwise possible. These new points are called Steiner points - locating them has proved problematic and research has diverged along many different avenues.This volume is devoted to the assimilation of the rich field of intriguing analyses and the consolidation of the fragments. A section has been given to each of the three major areas of interest which have emerged. The first concerns the Euclidean Steiner Problem, historically the original Steiner tree problem proposed by Jarník and Kössler in 1934. The second deals with the Steiner Problem in Networks, which was propounded independently by Hakimi and Levin and has enjoyed the most prolific research amongst the three areas. The Rectilinear Steiner Problem, introduced by Hanan in 1965, is discussed in the third part. Additionally, a forth section has been included, with chapters discussing areas where the body of results is still emerging.The collaboration of three authors with different styles and outlooks affords individual insights within a cohesive whole.


Disjunctive Programming

Disjunctive Programming

Author: Egon Balas

Publisher: Springer

Published: 2018-11-27

Total Pages: 238

ISBN-13: 3030001482

DOWNLOAD EBOOK

Disjunctive Programming is a technique and a discipline initiated by the author in the early 1970's, which has become a central tool for solving nonconvex optimization problems like pure or mixed integer programs, through convexification (cutting plane) procedures combined with enumeration. It has played a major role in the revolution in the state of the art of Integer Programming that took place roughly during the period 1990-2010. The main benefit that the reader may acquire from reading this book is a deeper understanding of the theoretical underpinnings and of the applications potential of disjunctive programming, which range from more efficient problem formulation to enhanced modeling capability and improved solution methods for integer and combinatorial optimization. Egon Balas is University Professor and Lord Professor of Operations Research at Carnegie Mellon University's Tepper School of Business.