Analytical Methods for Biomass Characterization and Conversion

Analytical Methods for Biomass Characterization and Conversion

Author: David C. Dayton

Publisher: Elsevier

Published: 2019-11-05

Total Pages: 262

ISBN-13: 0128156066

DOWNLOAD EBOOK

Analytical Methods for Biomass Characterization and Conversion is a thorough resource for researchers, students and professors who investigate the use of biomass for fuels, chemicals and products. Advanced analytical chemistry methods and techniques can now provide detailed compositional and chemical measurements of biomass, biomass conversion process streams, intermediates and products. This volume from the Emerging Issues in Analytical Chemistry series brings together the current knowledge on each of these methods, including spectroscopic methods (Fourier Transform Infrared Spectroscopy, Near-infrared Spectroscopy, Solid State Nuclear Magnetic Resonance), pyrolysis (Gas Chromatography/Mass Spectrometry), Liquid Chromatography/High Performance Liquid Chromatography, Liquid Chromatography/Mass Spectrometry, and so on. Authors David C. Dayton and Thomas D. Foust show how these can be used for measuring biomass composition and for determining the composition of intermediates with regard to subsequent processing for biofuels, bio-chemicals and bio-based products. - Covers the broad range of techniques and applications that have been developed and perfected in the last decade - Highlights specific analyses required for understanding biomass conversion to select intermediates - Provides references to seminal books, review articles and technical articles that go into greater depth, serving as a basis for further study


Biomass Recalcitrance

Biomass Recalcitrance

Author: Michael Himmel

Publisher: Wiley-Blackwell

Published: 2008-06-23

Total Pages: 552

ISBN-13:

DOWNLOAD EBOOK

This book examines the connection between biomass structure, ultrastructure, and composition, to resistance to enzymatic deconstruction, with the aim of discovering new cost-effective technologies for biorefineries. It contains chapters on topics extending from the highest levels of biorefinery design and biomass life-cycle analysis, to detailed aspects of plant cell wall structure, chemical treatments, enzymatic hydrolysis, and product fermentation options."--Pub. desc.


Valorization of Biomass to Value-Added Commodities

Valorization of Biomass to Value-Added Commodities

Author: Michael O. Daramola

Publisher: Springer Nature

Published: 2020-04-21

Total Pages: 594

ISBN-13: 3030380327

DOWNLOAD EBOOK

This book presents the most up-to-date technologies for the transformation of biomass into valuable fuels, chemicals, materials, and products. It provides comprehensive coverage of the characterization and fractionation of various types of biomass and details the many challenges that are currently encountered during this process. Divided into two sections, this book discusses timely topics such as the characterization of biomass feedstock, pretreatment and fractionation of biomass, and describes the process for conversion of biomass to value-added commodities. The authors bring biomass transformational strategies that are yet to be explored to the forefront, making this innovative book useful for graduate students and researchers in academia, government, and industry.


Technologies for Biochemical Conversion of Biomass

Technologies for Biochemical Conversion of Biomass

Author: Hongzhang Chen

Publisher: Academic Press

Published: 2016-12-14

Total Pages: 292

ISBN-13: 0128025948

DOWNLOAD EBOOK

Technologies for Biochemical Conversion of Biomass introduces biomass biochemical conversion technology, including the pretreatment platform, enzyme platform, cell refining platform, sugar platform, fermentation platform, and post-treatment platform. Readers will find a systematic treatment, not only of the basics of biomass biochemical conversion and the introduction of each strategy, but also of the current advances of research in this area. Researchers will find the key problems in each technology platform for biomass biochemical conversion identified and solutions offered. This valuable reference book features new scientific research and the related industrial application of biomass biochemical conversion technology as the main content, and then systematically introduces the basic principles and applications of biomass biochemical conversion technology. - Combines descriptions of these technologies to provide strategies and a platform for biochemical conversion in terms of basic knowledge, research advances, and key problems - Summarizes models of biomass biochemical conversion for multiple products - Presents products of biomass biochemical conversion from C1 to C10


Advancements in Biomass Feedstock Preprocessing: Conversion Ready Feedstocks

Advancements in Biomass Feedstock Preprocessing: Conversion Ready Feedstocks

Author: J. Richard Hess

Publisher: Frontiers Media SA

Published: 2020-03-12

Total Pages: 319

ISBN-13: 2889634655

DOWNLOAD EBOOK

The success of lignocellulosic biofuels and biochemical industries depends upon an economic and reliable supply of quality biomass. However, research and development efforts have historically focused on the utilization of agriculturally-derived, cellulosic feedstocks without consideration of their low energy density, high variations in physical and chemical characteristics and potential supply risks in terms of availability and affordability. This Research Topic will explore strategies that enable supply chain improvements in biomass quality and consistency through blending, preprocessing, diversity and landscape design for development of conversion-ready, lignocellulosic feedstocks for production of biofuels and bio-products. Biomass variability has proven a formidable challenge to the emerging biorefining industry, impeding continuous operation and reducing yields required for economical production of lignocellulosic biofuels at scale. Conventional supply systems lack the preprocessing capabilities necessary to ensure consistent biomass feedstocks with physical and chemical properties that are compatible with supply chain operations and conversion processes. Direct coupling of conventional feedstock supply systems with sophisticated conversion systems has reduced the operability of biorefining processes to less than 50%. As the bioeconomy grows, the inherent variability of biomass resources cannot be managed by passive means alone. As such, there is a need to fully recognize the magnitude of biomass variability and uncertainty, as well as the cost of failing to design feedstock supply systems that can mitigate biomass variability and uncertainty. A paradigm shift is needed, from biorefinery designs using raw, single-resource biomass, to advanced feedstock supply systems that harness diverse biomass resources to enable supply chain resilience and development of conversion-ready feedstocks. Blending and preprocessing (e.g., drying, sorting, sizing, fractionation, leaching, densification, etc.) can mitigate variable quality and performance in diverse resources when integrated with downstream conversion systems. Decoupling feedstock supply from biorefining provides an opportunity to manage supply risks and incorporate value-added upgrading to develop feedstocks with improved convertibility and/ or market fungibility. Conversion-ready feedstocks have undergone the required preprocessing to ensure compatibility with conversion and utilization prior to delivery at the biorefinery and represent lignocellulosic biomass with physical and chemical properties that are tailored to meet the requirements of industrially-relevant handling and conversion systems.


Handbook of Waste Biorefinery

Handbook of Waste Biorefinery

Author: Eduardo Jacob-Lopes

Publisher: Springer Nature

Published: 2022-09-01

Total Pages: 1001

ISBN-13: 303106562X

DOWNLOAD EBOOK

This handbook discusses the latest developments in biorefinery technologies for waste-to-energy conversion. The growing global population and the accompanying increase in consumption and waste production make it urgent to find the best possible use of our resources. A sustainable waste management under the biorefinery concept has great potential to support a sustainable circular economy and green energy production. This handbook is divided into four parts. First, the reader is introduced to the fundamentals and recent trends of waste-to-energy technologies. The second part describes in detail the current status, challenges, and potential of the different feedstocks used for waste-to-energy conversion. Here, municipal solid waste, sewage sludge, oils and greases generated during food preparation, industrial wastewaters, and agricultural wastes, to name a few, are introduced. In the third part, numerous waste-to-energy technologies are discussed in detail, including anaerobic digestion, composting, gasification, plasma technology, thermal cracking, and others. Advantages and optimization potentials of these technologies for efficient residue management, quality and yield are highlighted. Finally, the handbook discusses social, environmental and economic aspects of waste-to-energy biorefinery technologies. Readers will learn more about the major bottlenecks and solutions in bioenergy commercialization, the logistics of biomass supply and the carbon footprint of waste biorefineries. The ideas and technologies presented in this book contribute to the UN Sustainable Development Goal (SDG) of "Affordable and Clean Energy". This book is a useful reference for postgraduate students and researchers interested in biorefinery and biofuel technologies, both in academia- and commercial laboratories. Early career scientists can use it to fast track into the field. Advanced scientists will find it helpful in gaining a broader overview of the field beyond their area of specialization.


Pretreatment of Biomass

Pretreatment of Biomass

Author: Ashok Pandey

Publisher: Academic Press

Published: 2014-09-18

Total Pages: 273

ISBN-13: 0128003960

DOWNLOAD EBOOK

Pretreatment of Biomass provides general information, basic data, and knowledge on one of the most promising renewable energy sources—biomass for their pretreatment—which is one of the most essential and critical aspects of biomass-based processes development. The quest to make the environment greener, less polluted, and less hazardous has led to the concept of biorefineries for developing bio-based processes and products using biomass as a feedstock. Each kind of biomass requires some kind of pretreatment to make it suitable for bioprocess. This book provides state-of-art information on the methods currently available for this. This book provides data-based scientific information on the most advanced and innovative pretreatment of lignocellulosic and algal biomass for further processing. Pretreatment of biomass is considered one of the most expensive steps in the overall processing in a biomass-to-biofuel program. With the strong advancement in developing lignocellulose biomass- and algal biomass-based biorefineries, global focus has been on developing pretreatment methods and technologies that are technically and economically feasible. This book provides a comprehensive overview of the latest developments in methods used for the pretreatment of biomass. An entire section is devoted to the methods and technologies of algal biomass due to the increasing global attention of its use. - Provides information on the most advanced and innovative pretreatament processes and technologies for biomass - Covers information on lignocellulosic and algal biomass to work on the principles of biorefinery - Useful for researchers intending to study scale-up - Provides information on integration of processes and technologies for the pretreatment of biomass


Introduction to Biomass Energy Conversions

Introduction to Biomass Energy Conversions

Author: Sergio Capareda

Publisher: CRC Press

Published: 2023-11-07

Total Pages: 573

ISBN-13: 1000894827

DOWNLOAD EBOOK

Introduction to Biomass Energy Conversions explores biomass energy conversions and characterization using practical examples and real-world scenarios. It begins with biomass resource estimation and extends to commercialization pathways for economical biomass conversion into high-value materials, chemicals, and fuels. With extended discussions of new sustainability issues in biofuels production, such as carbon capture and sequestration, the second edition has been updated with carbon footprint work life cycle analysis, the growing circular economy, and newer research directions of biomass resources, such as graphene production from biochar. This book covers thermo-chemical conversion processes, including torrefaction, pyrolysis, gasification and advanced gasification, biomass liquefaction, and combustion. This book is intended for senior undergraduate students taking Renewable Energy Conversions, Bio Energy, Biomass Energy, Introduction to Biofuels, and Sustainability Engineering courses. This book also features end-of-chapter problems, exercises, and case studies with a Solutions Manual available for instructors.


Smokeless Tobacco Products

Smokeless Tobacco Products

Author:

Publisher: Elsevier

Published: 2020-01-23

Total Pages: 242

ISBN-13: 0128181591

DOWNLOAD EBOOK

Smokeless Tobacco Products: Characteristics, Usage, Health Effects, and Regulatory Implications, a title in the Emerging Issues in Analytical Chemistry series, presents an overview of research on the second most dangerous tobacco product. This book presents findings on public health risks emanating from the complex interaction between smokeless tobacco products and their users. It covers the key components of assessment and provides insight into scientific and public health considerations. The book does not take a simplistic condemnatory position, but rather conceptualizes tobacco use in terms of graduated public health danger and harm reduction. The book begins by introducing smokeless tobacco, its history of use, marketing, and implications for public health. It then continues with coverage of epidemiology, pathology and clinical implications, addiction, and treatment, and includes laboratory studies of human use. The following section explains the chemistry, biochemical mechanisms of carcinogenesis, and role of plant cultivation and manufacturing in toxicity. Finally, the book concludes by addressing regulatory considerations, the scientific basis of regulations, and the role of these products in harm reduction for smokers. This is the first resource of its kind to cover these topics together and in language appropriate to both specialists in the research community and informed persons responsible for legislative, funding, and public health matters in the community at large. - Brings attention to smokeless tobacco product use and its association with addiction and disease - Considers smokeless tobacco use historically and currently, as well as its place in a future harm-reduction conceptualization of tobacco - Written by a distinguished, internationally recognized group of tobacco researchers from academia, independent research organizations, and the federal government with expertise in the many and various disciplines covered


Herbicides

Herbicides

Author:

Publisher: Elsevier

Published: 2021-06-23

Total Pages: 368

ISBN-13: 0128236752

DOWNLOAD EBOOK

Herbicides: Chemistry, Efficacy, Toxicology, and Environmental Impacts addresses contemporary debates on herbicide toxicology. The reader is offered a comprehensive overview of this complex topic, presented by internationally recognized experts. Information presented will inform discussions on the use of herbicides in modern agricultural and other systems, and their potential non-target effects on human populations and various ecosystems. The book covers these matters in concise language appropriate to engage both specialists in the research community and informed persons responsible for legislative, funding, and public health matters in the community at large. The use of herbicides is an essential pillar of modern agricultural production systems. Weeds, if uncontrolled, would reduce crop yield and result in massive economic damage. Recently, the heavy reliance on single herbicides has been linked to the development of weed resistance. To combat resistant weeds, farmers are advised to use a mix of several herbicides and to increase herbicide application rates. As a result, the toxicity of herbicides on human health and the environment has become a controversial topic. - Offers a comprehensive overview of herbicide science in modern agricultural systems - Addresses the complex problems that can arise from herbicide use and misuse, including weed resistance, pollution, and human health issues - Uses recent examples to demonstrate the topical nature of this issue