Matrix theory has been used to simplify the subject matter. Basic ideas of Vector Algebra and Analysis will be helpful to bridge the modern treatments of different branches.
The book provides an introduction to vectors from their very basics. The author has approached the subject from a geometrical standpoint and although applications to mechanics will be pointed out and techniques from linear algebra employed, it is the geometric view which is emphasized throughout.
This book is a compilation of all basic topics of Analytical Geometry of Two Dimensions and is intended to serve as an introductory text aimed towards undergraduate and graduate students in science and technology. An understanding of basic school level algebra and geometry can serve as the prerequisite for following this book. The present work is no original work but an attempt to make the subject thoroughly intelligible. All the important properties of the conics have been discussed either in the articles or in illustrative examples. Each chapter has sufficient completely solved problems and a set of carefully graded and motivating unsolved exercises. Please note: Taylor & Francis does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.
Designed to meet the requirements of UG students, the book deals with the theoretical as well as the practical aspects of the subject. Equal emphasis has been given to both 2D as well as 3D geometry. The book follows a systematic approach with adequate examples for better understanding of the concepts.
Geared toward undergraduate students, this text illustrates the use of vectors as a mathematical tool in plane synthetic geometry, plane and spherical trigonometry, and analytic geometry of two- and three-dimensional space. Its rigorous development includes a complete treatment of the algebra of vectors in the first two chapters. Among the text's outstanding features are numbered definitions and theorems in the development of vector algebra, which appear in italics for easy reference. Most of the theorems include proofs, and coordinate position vectors receive an in-depth treatment. Key concepts for generalized vector spaces are clearly presented and developed, and 57 worked-out illustrative examples aid students in mastering the concepts. A total of 258 exercise problems offer supplements to theories or provide the opportunity to reinforce the understanding of applications, and answers to odd-numbered exercises appear at the end of the book.
"This book presents in an elegant way, the essentials of two and three dimensions of analytical geometry with plenty of examples to illustrate the basic ideas and to bequeath to the students numerous techniques of problem-solving. The exercises provide ample problems to supplement steady progress and to broaden the intuition of generalization. The overall approach is systematic, rigorous and least dependent on Euclidean propositions."--BOOK JACKET.
Calculus in 3D is an accessible, well-written textbook for an honors course in multivariable calculus for mathematically strong first- or second-year university students. The treatment given here carefully balances theoretical rigor, the development of student facility in the procedures and algorithms, and inculcating intuition into underlying geometric principles. The focus throughout is on two or three dimensions. All of the standard multivariable material is thoroughly covered, including vector calculus treated through both vector fields and differential forms. There are rich collections of problems ranging from the routine through the theoretical to deep, challenging problems suitable for in-depth projects. Linear algebra is developed as needed. Unusual features include a rigorous formulation of cross products and determinants as oriented area, an in-depth treatment of conics harking back to the classical Greek ideas, and a more extensive than usual exploration and use of parametrized curves and surfaces. Zbigniew Nitecki is Professor of Mathematics at Tufts University and a leading authority on smooth dynamical systems. He is the author of Differentiable Dynamics, MIT Press; Differential Equations, A First Course (with M. Guterman), Saunders; Differential Equations with Linear Algebra (with M. Guterman), Saunders; and Calculus Deconstructed, AMS.
The Present Book Coordinate Geometry Of Two Dimensions Aims At Providing The Students With A Detailed Study Of Polar Coordinates, Polar Equations Of A Straight Line And A Circle, Polar Equations Of Conics, General Equation Of Second Degree And System Of Conics The Topics Included In The Ugc Syllabus.Primarily Meant For Students Of B.Sc./B.A. Of Several Indian Universities, The Book Exactly Covers The Prescribed Syllabus. It Neither Includes The Irrelevant Nor Escapes The Essential Topics. Its Approach Is Explanatory, Lucid And Comprehensive. The Analytic Explanation Of The Subject Matter Is Very Systematic Which Would Enable The Students To Assess And Thereby Solve The Related Problems Easily. Sufficient Number Of High-Graded Solved Examples Provided In The Book Facilitate Better Understanding Of The Various Skills Necessary In Solving The Problems. In Addition, Practice Exercises Of Multiple Varieties Will Undoubtedly Prove Helpful In Quick Revision Of The Subject. The Figures And Also The Answers Provided In The Book Are Accurate And Verified Thoroughly.A Proper Study Of The Book Will Definitely Bring To Students A Brilliant Success. Even Teachers Will Find It Useful In Elucidating The Subject To The Students Of Mathematics.
Geared toward advanced undergraduates and graduate students, this text covers the coordinate system, planes and lines, spheres, homogeneous coordinates, general equations, quadric in Cartesian coordinates, and intersection of quadrics. 1947 edition.
vectors in plane and space, length of vector, magnitude of vector, collinear vectors, opposite vectors, coplanar vectors, addition of vectors, triangle rule and parallelogram rule, zero or null vector, subtraction of vectors, scalar multiplication, multiplication of vector by scalar, unit vector, linear combination of vectors, linear dependence of vectors, vectors and coordinate system , Cartesian vectors, vectors in coordinate plane, vectors two dimensional system of coordinates, radius vector, position vector, vector components, vectors in two-dimensional system examples, vectors in three-dimensional space in terms of Cartesian coordinates, angles of vectors in relation to coordinate axes, directional cosines, scalar components of vector, unit vector of vector, vectors in three-dimensional coordinate system examples, scalar product, dot product, inner product, perpendicularity of vectors, different position of two vectors, values of scalar product, square of magnitude of vector, scalar product of unit vector, scalar or dot product properties, scalar product in coordinate system, angle between vectors in coordinate plane, projection of vector in direction of another vector, scalar and vector components, vector product or cross product, vector product, right-handed system, example of vector product in physics, condition for two vectors to be parallel, condition for two vectors to be perpendicular, vector products of standard unit vectors, vector product in component form, mixed product or scalar triple product definition, mixed product properties, condition for three vectors to be coplanar, mixed product, scalar triple product, mixed product expressed in terms of components, vector product and mixed product use examples,coordinate geometry, points lines and planes in three-dimensional coordinate system represented by vectors, points lines and planes in three-dimensional space, position of two lines in 3D space, coplanar lines, skew lines, line and plane in three-dimensional space, two planes in three-dimensional space, line of intersection of two planes, orthogonality of line and plane and, orthogonal projection of point on plane, distance from point to plane, angle between line and plane, angle between two planes, line in three-dimensional coordinate system, equation of line in space, vector equation of line, parametric equation of line, equation of line defined by direction vector and point, symmetric equation of line, distance between two points, orthogonal projection of line in space on xy coordinate plane, line in 3D space examples, angle between lines, condition for intersection of two lines in 3D space, equations of plane in coordinate space, equations of plane in 3D coordinate system, intercept form of equation of plane, equation of plane through three points, distance between point and plane, angle between two planes, line and plane in space, line of intersection of two planes, projection of line on coordinate planes, two planes of which given line is their intersection, intersection point of line and plane, sheaf or pencil of planes, angle between line and plane, orthogonal projections, point line and plane distances, condition for line and plane to be perpendicular, line perpendicular to given plane, plane perpendicular to given line, projection of point on plane in space, projection of point on line in space, line perpendicular to given line, plane parallel with two skew lines, plane parallel with two parallel lines, distance between point and line in 3D space, distance between point and plane in space example, distance between parallel lines, distance between skew lines,