Analytical and Numerical Methods for Wave Propagation in Fluid Media

Analytical and Numerical Methods for Wave Propagation in Fluid Media

Author: K. Murawski

Publisher: World Scientific

Published: 2002

Total Pages: 260

ISBN-13: 9789812776631

DOWNLOAD EBOOK

This book surveys analytical and numerical techniques appropriate to the description of fluid motion with an emphasis on the most widely used techniques exhibiting the best performance.Analytical and numerical solutions to hyperbolic systems of wave equations are the primary focus of the book. In addition, many interesting wave phenomena in fluids are considered using examples such as acoustic waves, the emission of air pollutants, magnetohydrodynamic waves in the solar corona, solar wind interaction with the planet venus, and ion-acoustic solitons.


Numerical Methods for Wave Equations in Geophysical Fluid Dynamics

Numerical Methods for Wave Equations in Geophysical Fluid Dynamics

Author: Dale R. Durran

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 476

ISBN-13: 1475730810

DOWNLOAD EBOOK

Covering a wide range of techniques, this book describes methods for the solution of partial differential equations which govern wave propagation and are used in modeling atmospheric and oceanic flows. The presentation establishes a concrete link between theory and practice.


Analytical and Numerical Methods for Wave Propagation in Fluid Media

Analytical and Numerical Methods for Wave Propagation in Fluid Media

Author: Krzysztof Murawski

Publisher: World Scientific

Published: 2002

Total Pages: 255

ISBN-13: 9812381554

DOWNLOAD EBOOK

This book surveys analytical and numerical techniques appropriate to the description of fluid motion with an emphasis on the most widely used techniques exhibiting the best performance. Analytical and numerical solutions to hyperbolic systems of wave equations are the primary focus of the book. In addition, many interesting wave phenomena in fluids are considered using examples such as acoustic waves, the emission of air pollutants, magnetohydrodynamic waves in the solar corona, solar wind interaction with the planet venus, and ion-acoustic solitons.


Wave Fields in Real Media

Wave Fields in Real Media

Author: José M. Carcione

Publisher: Elsevier

Published: 2014-12-08

Total Pages: 690

ISBN-13: 0081000030

DOWNLOAD EBOOK

Authored by the internationally renowned José M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media examines the differences between an ideal and a real description of wave propagation, starting with the introduction of relevant stress-strain relations. The combination of this relation and the equations of momentum conservation lead to the equation of motion. The differential formulation is written in terms of memory variables, and Biot's theory is used to describe wave propagation in porous media. For each rheology, a plane-wave analysis is performed in order to understand the physics of wave propagation. This book contains a review of the main direct numerical methods for solving the equation of motion in the time and space domains. The emphasis is on geophysical applications for seismic exploration, but researchers in the fields of earthquake seismology, rock acoustics, and material science - including many branches of acoustics of fluids and solids - may also find this text useful. New to this edition: This new edition presents the fundamentals of wave propagation in Anisotropic, Anelastic, Porous Media while also incorporating the latest research from the past 7 years, including that of the author. The author presents all the equations and concepts necessary to understand the physics of wave propagation. These equations form the basis for modeling and inversion of seismic and electromagnetic data. Additionally, demonstrations are given, so the book can be used to teach post-graduate courses. Addition of new and revised content is approximately 30%. Examines the fundamentals of wave propagation in anisotropic, anelastic and porous media Presents all equations and concepts necessary to understand the physics of wave propagation, with examples Emphasizes geophysics, particularly, seismic exploration for hydrocarbon reservoirs, which is essential for exploration and production of oil


Wave Propagation in Fluids

Wave Propagation in Fluids

Author: Vincent Guinot

Publisher: John Wiley & Sons

Published: 2012-12-27

Total Pages: 394

ISBN-13: 1118587634

DOWNLOAD EBOOK

This second edition with four additional chapters presents the physical principles and solution techniques for transient propagation in fluid mechanics and hydraulics. The application domains vary including contaminant transport with or without sorption, the motion of immiscible hydrocarbons in aquifers, pipe transients, open channel and shallow water flow, and compressible gas dynamics. The mathematical formulation is covered from the angle of conservation laws, with an emphasis on multidimensional problems and discontinuous flows, such as steep fronts and shock waves. Finite difference-, finite volume- and finite element-based numerical methods (including discontinuous Galerkin techniques) are covered and applied to various physical fields. Additional chapters include the treatment of geometric source terms, as well as direct and adjoint sensitivity modeling for hyperbolic conservation laws. A concluding chapter is devoted to practical recommendations to the modeler. Application exercises with on-line solutions are proposed at the end of the chapters.


Effective Computational Methods for Wave Propagation

Effective Computational Methods for Wave Propagation

Author: Nikolaos A. Kampanis

Publisher: CRC Press

Published: 2008-02-25

Total Pages: 707

ISBN-13: 1420010875

DOWNLOAD EBOOK

Due to the increase in computational power and new discoveries in propagation phenomena for linear and nonlinear waves, the area of computational wave propagation has become more significant in recent years. Exploring the latest developments in the field, Effective Computational Methods for Wave Propagation presents several modern, valuable


Multi-scale Phenomena in Complex Fluids

Multi-scale Phenomena in Complex Fluids

Author: Thomas Y. Hou

Publisher: World Scientific

Published: 2009

Total Pages: 379

ISBN-13: 9814273252

DOWNLOAD EBOOK

Multi-Scale Phenomena in Complex Fluids is a collection of lecture notes delivered during the ªrst two series of mini-courses from "Shanghai Summer School on Analysis and Numerics in Modern Sciences," which was held in 2004 and 2006 at Fudan University, Shanghai, China. This review volume of 5 chapters, covering various fields in complex fluids, places emphasis on multi-scale modeling, analyses and simulations. It will be of special interest to researchers and graduate students who want to work in the field of complex fluids.


Numerical Modeling of Seismic Wave Propagation

Numerical Modeling of Seismic Wave Propagation

Author: Johan O. A. Robertsson

Publisher: SEG Books

Published: 2012

Total Pages: 115

ISBN-13: 1560802901

DOWNLOAD EBOOK

The decades following SEG's 1990 volume on numerical modeling showed a step change in the application and use of full wave equation modeling methods enabled by the increase in computational power. Full waveform inversion, reverse time migration, and 3D elastic finite-difference synthetic data generation are examples. A searchable CD is included.


Nonlinear Waves in Integrable and Non-integrable Systems

Nonlinear Waves in Integrable and Non-integrable Systems

Author: Jianke Yang

Publisher: SIAM

Published: 2010-12-02

Total Pages: 452

ISBN-13: 0898717051

DOWNLOAD EBOOK

Nonlinear Waves in Integrable and Nonintegrable Systems presents cutting-edge developments in the theory and experiments of nonlinear waves. Its comprehensive coverage of analytical and numerical methods for nonintegrable systems is the first of its kind. This book is intended for researchers and graduate students working in applied mathematics and various physical subjects where nonlinear wave phenomena arise (such as nonlinear optics, Bose-Einstein condensates, and fluid dynamics).


High Accuracy Computing Methods

High Accuracy Computing Methods

Author: Tapan Sengupta

Publisher: Cambridge University Press

Published: 2013-05-16

Total Pages: 589

ISBN-13: 1107023637

DOWNLOAD EBOOK

""Presents methods necessary for high accuracy computing of fluid flow and wave phenomena in single source format using unified spectral theory of computing"--Provided by publisher"--