Analysis of Electromagnetic Fields and Waves

Analysis of Electromagnetic Fields and Waves

Author: Reinhold Pregla

Publisher: Wiley Chichester

Published: 2008-05-19

Total Pages: 536

ISBN-13:

DOWNLOAD EBOOK

Bragg gratings, meander lines, clystron resonators, photonic crystals), antennas (e.g. circular and conformal); and enables the reader to solve partial differential equations in other physical areas by using the described principles."--BOOK JACKET.


Methods for Electromagnetic Field Analysis

Methods for Electromagnetic Field Analysis

Author: Ismo V. Lindell

Publisher: Oxford University Press, USA

Published: 1992

Total Pages: 310

ISBN-13:

DOWNLOAD EBOOK

This monograph discusses mathematical and conceptual methods used in the analysis of electromagnetic fields and waves. Dyadic algebra is reviewed and armed with new identities to be applied throughout the book. The power of dyadic operations is seen when working with boundary, sheet, and interface conditions, medium equations, field transformations, Green functions, plane wave problems, vector circuit theory, multipole and image sources. Dyadic algebra allows convenience in handling problems involving chiral and bianisotropic media, of recent interest because of their wide range of potential applications. The final chapter gives, for the first time in book form, a unified presentation of EIT, the exact image theory, introduced by this author and colleagues. EIT is a general method for solving problems involving layered media by replacing them through image sources located in complex space. The main emphasis of the monograph is not on specific results but methods of analysis. The work will interest research-level electromagnetic physicists and engineers, and applied mathematicians.


Analysis of Electromagnetic Fields and Waves

Analysis of Electromagnetic Fields and Waves

Author: Reinhold Pregla

Publisher: John Wiley & Sons

Published: 2008-04-30

Total Pages: 522

ISBN-13: 047005851X

DOWNLOAD EBOOK

The Method of Lines (MOL) is a versatile approach to obtaining numerical solutions to partial differential equations (PDEs) as they appear in dynamic and static problems. This method, popular in science and engineering, essentially reduces PDEs to a set of ordinary differential equations that can be integrated using standard numerical integration methods. Its significant advantage is that the analysis algorithms follow the physical wave propagation and are therefore efficient. This is because the fields on the discretisation lines are described by generalised transmission line (GTL) equations. With this formulation we have a connection to the well known transmission line theory and resulting in an easy understanding. The method of lines is a very accurate and powerful way to analyze electromagnetic waves, enabling a full-wave solution without the computational burden of pure finite element or finite difference methods. With Analysis of Electromagnetic Fields and Waves, Reinhold Pregla describes an important and powerful method for analyzing electromagnetic waves. This book: Describes the general analysis principles for electromagnetic fields. Includes applications in microwave, millimetre wave and optical frequency regions. Unifies the analysis by introducing generalised transmission line (GTL) equations for all orthogonal coordinate systems and with materials of arbitrary anisotropy as a common start point. Demonstrates a unique analysis principle with the numerical stable impedance/admittance transformation and a physical adapted field transformation concept that is also useful for other modelling algorithms. Includes chapters on Eigenmode calculations for various waveguides, concatenations and junctions of arbitrary number of different waveguide sections in complex devices, periodic structures (e.g. Bragg gratings, meander lines, clystron resonators, photonic crystals), antennas (e.g. circular and conformal). Enables the reader to solve partial differential equations in other physical areas by using the described principles. Features an accompanying website with program codes in Matlab© for special problems. Analysis of Electromagnetic Fields and Waves will appeal to electromagnetic field practitioners in primary and applied research as well as postgraduate students in the areas of photonics, micro- and millimetre waves, general electromagnetics, e.g. microwave integrated circuits, antennas, integrated and fibre optics, optoelectronics, nanophotonics, microstructures, artificial materials.


Electromagnetic Fields and Waves in Fractional Dimensional Space

Electromagnetic Fields and Waves in Fractional Dimensional Space

Author: Muhammad Zubair

Publisher: Springer Science & Business Media

Published: 2012-01-03

Total Pages: 82

ISBN-13: 364225358X

DOWNLOAD EBOOK

This book presents the concept of fractional dimensional space applied to the use of electromagnetic fields and waves. It provides demonstrates the advantages in studying the behavior of electromagnetic fields and waves in fractal media. The book presents novel fractional space generalization of the differential electromagnetic equations is provided as well as a new form of vector differential operators is formulated in fractional space. Using these modified vector differential operators, the classical Maxwell's electromagnetic equations are worked out. The Laplace's, Poisson's and Helmholtz's equations in fractional space are derived by using modified vector differential operators.


Analysis Methods for Electromagnetic Wave Problems

Analysis Methods for Electromagnetic Wave Problems

Author: Eikichi Yamashita

Publisher: Artech House Publishers

Published: 1990

Total Pages: 424

ISBN-13:

DOWNLOAD EBOOK

Here are the newest methods for using computers to design linear antennas and microwave printed circuits. Learn how to use supercomputers to apply the FD-TD and the FE methods, and how to develop computation programs. Includes the methods of antenna analysis with integral equation, physical optics approximation, electromagnetic wave scattering due to random surface, eigen function expansion, and rectangular boundary division. Features practice problems and answers, plus examples of actual calculation programs. With 132 diagrams and 1121 equations.


Electromagnetic Fields and Waves

Electromagnetic Fields and Waves

Author: Eugene I. Nefyodov

Publisher: Springer

Published: 2018-08-27

Total Pages: 329

ISBN-13: 3319908472

DOWNLOAD EBOOK

This textbook is intended for a course in electromagnetism for upper undergraduate and graduate students. The main concepts and laws of classical macroscopic electrodynamics and initial information about generalized laws of modern electromagnetics are discussed, explaining some paradoxes of the modern theory. The reader then gets acquainted with electrodynamics methods of field analysis on the basis of wave equation solution. Emission physics are considered using an example of the Huygens-Fresnel-Kirchhoff canonic principle. The representation about strict electrodynamics task statement on the base of Maxwell equations, boundary conditions, emission conditions and the condition on the edge is given. Different classes of approximate boundary conditions are presented, which essentially simplify understanding of process physics. The canonic Fresnel functions are given and their generalization on the case of anisotropic impedance. The free waves in closed waveguides and in strip-slotted and edge-dielectric transmission lines are described. A large number of Mathcad programs for illustration of field patterns and its properties in different guiding structures are provided. The material is organized for self-study as well as classroom use.


Theory and Computation of Electromagnetic Fields

Theory and Computation of Electromagnetic Fields

Author: Jian-Ming Jin

Publisher: John Wiley & Sons

Published: 2015-08-10

Total Pages: 744

ISBN-13: 111910808X

DOWNLOAD EBOOK

Reviews the fundamental concepts behind the theory and computation of electromagnetic fields The book is divided in two parts. The first part covers both fundamental theories (such as vector analysis, Maxwell’s equations, boundary condition, and transmission line theory) and advanced topics (such as wave transformation, addition theorems, and fields in layered media) in order to benefit students at all levels. The second part of the book covers the major computational methods for numerical analysis of electromagnetic fields for engineering applications. These methods include the three fundamental approaches for numerical analysis of electromagnetic fields: the finite difference method (the finite difference time-domain method in particular), the finite element method, and the integral equation-based moment method. The second part also examines fast algorithms for solving integral equations and hybrid techniques that combine different numerical methods to seek more efficient solutions of complicated electromagnetic problems. Theory and Computation of Electromagnetic Fields, Second Edition: Provides the foundation necessary for graduate students to learn and understand more advanced topics Discusses electromagnetic analysis in rectangular, cylindrical and spherical coordinates Covers computational electromagnetics in both frequency and time domains Includes new and updated homework problems and examples Theory and Computation of Electromagnetic Fields, Second Edition is written for advanced undergraduate and graduate level electrical engineering students. This book can also be used as a reference for professional engineers interested in learning about analysis and computation skills.


Quick Finite Elements for Electromagnetic Waves

Quick Finite Elements for Electromagnetic Waves

Author: Giuseppe Pelosi

Publisher: Artech House

Published: 2009

Total Pages: 311

ISBN-13: 1596933461

DOWNLOAD EBOOK

The classic 1998 Artech House book, Quick Finite Elements for Electromagnetic Waves, has now been revised and expanded to bring you up-to-date with the latest developments in the Field. You find brand new discussions on finite elements in 3D, 3D resonant cavities, and 3D waveguide devices. Moreover, the second edition supplies you with MATLAB code, making this resource easier to comprehend and use for your projects in the field. This practical book and accompanying software enables you to quickly and easily work out challenging microwave engineering and high-frequency electromagnetic problems using the finite element method (FEM). Using clear, concise text and dozens of real-world application examples, the book provides a detailed description of FEM implementation, while the software provides the code and tools needed to solve the three major types of EM problems: guided propagation, scattering, and radiation. With this unique book and software set in hand, you can compute the dispersion diagram of arbitrarily shaped inhomogeneous isotropic lossless or lossy guiding structures, analyze E- and H-plane waveguide discontinuities and devices, and understand the reflection from and transmission through simple 2D and 3D inhomogeneous periodic structures. CD-ROM Included! Easy-to-use finite element software contains ready-made MATLAB and FORTRAN source code that you can use immediately to solve a wide range of microwave and EM problems. The package is fully compatible with Internet "freeware, " so you can perform advanced engineering functions without having to purchase expensive pre- and post-processing tools.


Electromagnetic Fields and Waves

Electromagnetic Fields and Waves

Author: Magdy F. Iskander

Publisher:

Published: 2013

Total Pages: 0

ISBN-13: 9781577667834

DOWNLOAD EBOOK

The latest edition of Electromagnetic Fields and Waves retains an authoritative, balanced approach, in-depth coverage, extensive analysis, and use of computational techniques to provide a complete understanding of electromagnetic important to all electrical engineering students. An essential feature of this innovative text is the early introduction of Maxwell's equations, together with the quantifying experimental observations made by the pioneers who discovered electromagnetics. This approach directly links the mathematical relations in Maxwell's equations to real experiments and facilitates a fundamental understanding of wave propagation and use in modern practical applications, especially in today's wireless world. New and expanded topics include the conceptual relationship between Coulomb's law and Gauss's law for calculating electric fields, the relationship between Biot-Savart's and Ampere's laws and their use in calculating magnetic fields from current sources, the development of Faraday's law from experimental observations, and a comprehensive discussion and analysis of the displacement current term that unified the laws of electromagnetism. The text also includes sections on computational techniques in electromagnetics and applications in electrostatics, in transmission lines, and in wire antenna designs. The antennas chapter has been substantially broadened in scope; it now can be used as a stand-alone text in an introductory antennas course. Advantageous pedagogical features appear in every chapter: examples that illustrate key topics and ask the reader to render a solution to a question or problem posed; an abundant number of detailed figures and diagrams, enabling a visual interpretation of the developed mathematical equations; and multiple review questions and problems designed to strengthen and accelerate the learning process. Helpful material is included in six appendices, including answers to selected problems. Unlike other introductory texts, Electromagnetic Fields and Waves does not bog readers down with equations and mathematical relations. Instead, it focuses on the fundamental understanding and exciting applications of electromagnetics. Not-for-sale instructor resource material available to college and university faculty only; contact publisher directly. [Resumen del editor].


Guided Electromagnetic Waves

Guided Electromagnetic Waves

Author: Michał Mrozowski

Publisher:

Published: 1997

Total Pages: 400

ISBN-13:

DOWNLOAD EBOOK

The development of efficient techniques for the rigorous modelling of electromagnetic phenomena is a key factor in determining the progress in many technical area from microwave engineering to X-Ray technology. This book presents a class of numerical techniques for the analysis of discrete spectra of electrodynamic operators, highlights their advantages and drawbacks, and discusses their potential for solving practical problems. Examples of the application of some of the methods to solve both field theory and engineering problems are included.