Analysis and Synthesis of Singular Systems

Analysis and Synthesis of Singular Systems

Author: Zhiguang Feng

Publisher: Academic Press

Published: 2020-11-04

Total Pages: 264

ISBN-13: 0128237406

DOWNLOAD EBOOK

Analysis and Synthesis of Singular Systems provides a base for further theoretical research and a design guide for engineering applications of singular systems. The book presents recent advances in analysis and synthesis problems, including state-feedback control, static output feedback control, filtering, dissipative control, H8 control, reliable control, sliding mode control and fuzzy control for linear singular systems and nonlinear singular systems. Less conservative and fresh novel techniques, combined with the linear matrix inequality (LMI) technique, the slack matrix method, and the reciprocally convex combination approach are applied to singular systems. This book will be of interest to academic researchers, postgraduate and undergraduate students working in control theory and singular systems. - Discusses recent advances in analysis and synthesis problems for linear singular systems and nonlinear singular systems - Offers a base for further theoretical research as well as a design guide for engineering applications of singular systems - Presents several necessary and sufficient conditions for delay-free singular systems and some less conservative results for time-delay singular systems


Analysis and Synthesis of Singular Systems

Analysis and Synthesis of Singular Systems

Author: Zhiguang Feng

Publisher: Academic Press

Published: 2020-11-20

Total Pages: 262

ISBN-13: 0128237392

DOWNLOAD EBOOK

Analysis and Synthesis of Singular Systems provides a base for further theoretical research and a design guide for engineering applications of singular systems. The book presents recent advances in analysis and synthesis problems, including state-feedback control, static output feedback control, filtering, dissipative control, H? control, reliable control, sliding mode control and fuzzy control for linear singular systems and nonlinear singular systems. Less conservative and fresh novel techniques, combined with the linear matrix inequality (LMI) technique, the slack matrix method, and the reciprocally convex combination approach are applied to singular systems. This book will be of interest to academic researchers, postgraduate and undergraduate students working in control theory and singular systems. Discusses recent advances in analysis and synthesis problems for linear singular systems and nonlinear singular systems Offers a base for further theoretical research as well as a design guide for engineering applications of singular systems Presents several necessary and sufficient conditions for delay-free singular systems and some less conservative results for time-delay singular systems


Stability Analysis and Design for Nonlinear Singular Systems

Stability Analysis and Design for Nonlinear Singular Systems

Author: Chunyu Yang

Publisher: Springer

Published: 2012-08-14

Total Pages: 213

ISBN-13: 3642321445

DOWNLOAD EBOOK

Singular systems which are also referred to as descriptor systems, semi-state systems, differential- algebraic systems or generalized state-space systems have attracted much attention because of their extensive applications in the Leontief dynamic model, electrical and mechanical models, etc. This monograph presented up-to-date research developments and references on stability analysis and design of nonlinear singular systems. It investigated the problems of practical stability, strongly absolute stability, input-state stability and observer design for nonlinear singular systems and the problems of absolute stability and multi-objective control for nonlinear singularly perturbed systems by using Lyapunov stability theory, comparison principle, S-procedure and linear matrix inequality (LMI), etc. Practical stability, being quite different from stability in the sense of Lyapunov, is a significant performance specification from an engineering point of view. The basic concepts and results on practical stability for standard state-space systems were generalized to singular systems. For Lur’e type descriptor systems (LDS) which were the feedback interconnection of a descriptor system with a static nonlinearity, strongly absolute stability was defined and Circle criterion and Popov criterion were derived. The notion of input-state stability (ISS) for nonlinear singular systems was defined based on the concept of ISS for standard state-space systems and the characteristics of singular systems. LMI-based sufficient conditions for ISS of Lur’e singular systems were proposed. Furthermore, observer design for nonlinear singular systems was studied and some observer design methods were proposed by the obtained stability results and convex optimization algorithms. Finally, absolute stability and multi-objective control of nonlinear singularly perturbed systems were considered. By Lyapunov functions, absolute stability criteria of Lur’e singularly perturbed systems were proposed and multi-objective control of T-S fuzzy singularly perturbed systems was achieved. Compared with the existing results, the obtained methods do not depend on the decomposition of the original system and can produce a determinate upper bound for the singular perturbation parameter.


Singular Control Systems

Singular Control Systems

Author: Liyi Dai

Publisher: Springer

Published: 2014-03-12

Total Pages: 334

ISBN-13: 9783662193914

DOWNLOAD EBOOK

This monograph is sums up the development of singular system theory and provides the control circle with a systematic theory of the system. It focuses on the analysis and synthesis of singular control systems. Its distinctive features include systematic discussion of controllabilities and observabilities, design of singular or normal observers and compensators with their structural stability, systems analysis via transfer matrix, and studies of discrete-time singular systems. Some acquaintance with linear algebra and linear systems is assumed. Prospective readers are graduate students, scientists, and other researchers in control theory and its applications. Much of the material in the book is new.


Analysis and Synthesis of Singular Systems with Time-Delays

Analysis and Synthesis of Singular Systems with Time-Delays

Author: Zheng-Guang Wu

Publisher: Springer

Published: 2013-04-10

Total Pages: 232

ISBN-13: 3642374972

DOWNLOAD EBOOK

Singular time-delay systems are very suitable to describe a lot of practical systems such as manufacturing systems, networked control systems, power systems and electrical circuits. Thus, the past two decades have witnessed a significant progress on the theory of singular time-delay systems, and many fundamental and important topics have been successfully investigated including stability analysis, stabilization, guaranteed cost control, filtering, observer design, sliding mode control and so on. The main objective of this book is to present the latest developments and references in the analysis and synthesis of singular time-delay systems with or without Markov jumping parameters in a unified framework. The materials adopted in this book are mainly based on research results of the authors. This book will be of interest to academic researchers working in singular systems, time-delay systems and Markov jump systems and to graduate students interested in systems and control theory.


Finite Frequency Analysis and Synthesis for Singularly Perturbed Systems

Finite Frequency Analysis and Synthesis for Singularly Perturbed Systems

Author: Chenxiao Cai

Publisher: Springer

Published: 2016-09-28

Total Pages: 233

ISBN-13: 3319454056

DOWNLOAD EBOOK

This book is a self-contained collection of recent research findings providing a comprehensive and systematic unified framework for both analysis and synthesis for singularly perturbed systems. It paves the way for the gap between frequency-domain-transfer-function-based results and time-domain-state-space-based results to be bridged. It is divided into three parts focusing on: fundamental background of singular perturbation; general singular perturbation methodologies and time-scale techniques and the theoretical foundation of finite-frequency control; the analysis and synthesis of singularly perturbed systems; and real-world engineering applications implementing the results developed in systems like wind turbines and autonomous-aerial-vehicle hovering. It also presents solutions to analysis and design problems in terms of linear matrix inequalities. Lastly, it provides valuable reference material for researchers who wish to explore the design of controllers for such systems.


Proceedings of the 2015 Chinese Intelligent Automation Conference

Proceedings of the 2015 Chinese Intelligent Automation Conference

Author: Zhidong Deng

Publisher: Springer

Published: 2015-04-20

Total Pages: 569

ISBN-13: 3662464632

DOWNLOAD EBOOK

Proceedings of the 2015 Chinese Intelligent Automation Conference presents selected research papers from the CIAC’15, held in Fuzhou, China. The topics include adaptive control, fuzzy control, neural network based control, knowledge based control, hybrid intelligent control, learning control, evolutionary mechanism based control, multi-sensor integration, failure diagnosis, reconfigurable control, etc. Engineers and researchers from academia, industry and the government can gain valuable insights into interdisciplinary solutions in the field of intelligent automation.


Multivariable Feedback Control

Multivariable Feedback Control

Author: Sigurd Skogestad

Publisher: John Wiley & Sons

Published: 2005-11-04

Total Pages: 594

ISBN-13: 047001167X

DOWNLOAD EBOOK

Multivariable Feedback Control: Analysis and Design, Second Edition presents a rigorous, yet easily readable, introduction to the analysis and design of robust multivariable control systems. Focusing on practical feedback control and not on system theory in general, this book provides the reader with insights into the opportunities and limitations of feedback control. Taking into account the latest developments in the field, this fully revised and updated second edition: * features a new chapter devoted to the use of linear matrix inequalities (LMIs); * presents current results on fundamental performance limitations introduced by RHP-poles and RHP-zeros; * introduces updated material on the selection of controlled variables and self-optimizing control; * provides simple IMC tuning rules for PID control; * covers additional material including unstable plants, the feedback amplifier, the lower gain margin and a clear strategy for incorporating integral action into LQG control; * includes numerous worked examples, exercises and case studies, which make frequent use of Matlab and the new Robust Control toolbox. Multivariable Feedback Control: Analysis and Design, Second Edition is an excellent resource for advanced undergraduate and graduate courses studying multivariable control. It is also an invaluable tool for engineers who want to understand multivariable control, its limitations, and how it can be applied in practice. The analysis techniques and the material on control structure design should prove very useful in the new emerging area of systems biology. Reviews of the first edition: "Being rich in insights and practical tips on controller design, the book should also prove to be very beneficial to industrial control engineers, both as a reference book and as an educational tool." Applied Mechanics Reviews "In summary, this book can be strongly recommended not only as a basic text in multivariable control techniques for graduate and undergraduate students, but also as a valuable source of information for control engineers." International Journal of Adaptive Control and Signal Processing


Nonlinear Systems Analysis

Nonlinear Systems Analysis

Author: M. Vidyasagar

Publisher: SIAM

Published: 2002-01-01

Total Pages: 515

ISBN-13: 9780898719185

DOWNLOAD EBOOK

When M. Vidyasagar wrote the first edition of Nonlinear Systems Analysis, most control theorists considered the subject of nonlinear systems a mystery. Since then, advances in the application of differential geometric methods to nonlinear analysis have matured to a stage where every control theorist needs to possess knowledge of the basic techniques because virtually all physical systems are nonlinear in nature. The second edition, now republished in SIAM's Classics in Applied Mathematics series, provides a rigorous mathematical analysis of the behavior of nonlinear control systems under a variety of situations. It develops nonlinear generalizations of a large number of techniques and methods widely used in linear control theory. The book contains three extensive chapters devoted to the key topics of Lyapunov stability, input-output stability, and the treatment of differential geometric control theory. Audience: this text is designed for use at the graduate level in the area of nonlinear systems and as a resource for professional researchers and practitioners working in areas such as robotics, spacecraft control, motor control, and power systems.


Control of Singular Systems with Random Abrupt Changes

Control of Singular Systems with Random Abrupt Changes

Author: El-Kébir Boukas

Publisher: Springer Science & Business Media

Published: 2008-01-12

Total Pages: 268

ISBN-13: 3540743456

DOWNLOAD EBOOK

This book deals with the class of singular systems with random abrupt changes also known as singular Markovian jump systems. Various problems and their robustness are tackled. The book examines both the theoretical and practical aspects of the control problems from the angle of the structural properties of linear systems. It can be used as a textbook as well as a reference for researchers in control or mathematics with interest in control theory.