This thesis develops several systematic and unified approaches for analyzing dynamic systems with positive characteristics or a more general cone invariance property. Based on these analysis results, it uses linear programming tools to address static output feedback synthesis problems with a focus on optimal gain performances. Owing to their low computational complexity, the established controller design algorithms are applicable for large-scale systems. The theory and control strategies developed will not only be useful in handling large-scale positive delay systems with improved solvability and at lower cost, but also further our understanding of the system characteristics in other related areas, such as distributed coordination of networked multi-agent systems, formation control of multiple robots.
The book focuses on analysis and design for positive stochastic jump systems. By using multiple linear co-positive Lyapunov function method and linear programming technique, a basic theoretical framework is formed toward the issues of analysis and design for positive stochastic jump systems. This is achieved by providing an in-depth study on several major topics such as stability, time delay, finite-time control, observer design, filter design, and fault detection for positive stochastic jump systems. The comprehensive and systematic treatment of positive systems is one of the major features of the book, which is particularly suited for readers who are interested to learn non-negative theory. By reading this book, the reader can obtain the most advanced analysis and design techniques for positive stochastic jump systems.
This monograph presents original methods of analysis and synthesis for a wide class of control systems with required accuracy. The direct interaction between those methods and classical frequency domain methods is demonstrated as well as its importance for the investigation of automatic control systems quality. This clearly and thoughtful written book is aimed at control engineers, practitioners such as system designers or designers of automatic control devices, as well as researchers in control theory. Ensuring Control Accuracy is also a useful textbook for graduate students, carefully simplifying the understanding of the field including instructive questions at the end of each chapter.
This text covers the material that every engineer, and most scientists and prospective managers, needs to know about feedback control, including concepts like stability, tracking, and robustness. Each chapter presents the fundamentals along with comprehensive, worked-out examples, all within a real-world context.
A dynamical system refers to a set of elements that interact in complex, often nonlinear ways to form coherent patterns. Because of the complexity of these interactions, the system as a whole may evolve over time in seemingly unpredictable ways as new patterns of behavior emerge. This metatheory has proven useful in understanding diverse phenomena in meteorology, population biology, statistical mechanics, economics, and cosmology. The book demonstrates how the dynamical systems perspective can be applied to theory construction and research in social psychology, and in doing so, provides fresh insight into such complex phenomena as interpersonal behavior, social relations, attitudes, and social cognition.
Methodological Guidelines for Modeling and Developing MAS-Based Simulations The intersection of agents, modeling, simulation, and application domains has been the subject of active research for over two decades. Although agents and simulation have been used effectively in a variety of application domains, much of the supporting research remains scattered in the literature, too often leaving scientists to develop multi-agent system (MAS) models and simulations from scratch. Multi-Agent Systems: Simulation and Applications provides an overdue review of the wide ranging facets of MAS simulation, including methodological and application-oriented guidelines. This comprehensive resource reviews two decades of research in the intersection of MAS, simulation, and different application domains. It provides scientists and developers with disciplined engineering approaches to modeling and developing MAS-based simulations. After providing an overview of the field’s history and its basic principles, as well as cataloging the various simulation engines for MAS, the book devotes three sections to current and emerging approaches and applications. Simulation for MAS — explains simulation support for agent decision making, the use of simulation for the design of self-organizing systems, the role of software architecture in simulating MAS, and the use of simulation for studying learning and stigmergic interaction. MAS for Simulation — discusses an agent-based framework for symbiotic simulation, the use of country databases and expert systems for agent-based modeling of social systems, crowd-behavior modeling, agent-based modeling and simulation of adult stem cells, and agents for traffic simulation. Tools — presents a number of representative platforms and tools for MAS and simulation, including Jason, James II, SeSAm, and RoboCup Rescue. Complete with over 200 figures and formulas, this reference book provides the necessary overview of experiences with MAS simulation and the tools needed to exploit simulation in MAS for future research in a vast array of applications including home security, computational systems biology, and traffic management.
An integrated presentation of both classical and modern methods of systems modeling, response and control. Includes coverage of digital control systems. Details sample data systems and digital control. Provides numerical methods for the solution of differential equations. Gives in-depth information on the modeling of physical systems and central hardware.